Khử màu nước thải nhuộm anthraquinon bằng hệ thống DHS kỵ khí - hiếu khí nối tiếp với sự tham gia của vi khuẩn oxy hóa mangan
Tóm tắt: 60
|
PDF: 33
##plugins.themes.academic_pro.article.main##
Author
-
Dinh Thi Thu HaFaculty of Environment, Ho Chi Minh City University of Natural Resources and Environment, Vietnam
Từ khóa:
Tóm tắt
Nghiên cứu đánh giá hiệu quả hệ thống giá thể treo nhỏ giọt (DHS) kỵ khí – hiếu khí có vi khuẩn oxy hóa mangan (MnOB) như một giải pháp sinh học chi phí thấp để xử lý nước thải nhuộm. Nước thải giả lập chứa Alizarin Red S (100 mg/L) được cấp vào hai bể phản ứng nối tiếp với thời gian lưu 12 giờ. Ở pha kỵ khí, khoảng 70% COD, TOC đã được loại bỏ, bao gồm một phần thuốc nhuộm cùng với các cơ chất hữu cơ khác. Hiệu suất khử màu đạt 75–80% kèm theo sự hình thành Mn(II), phản ánh sự phối hợp giữa cơ chế hoá học và sinh học, trong đó cơ chế sinh học chiếm ưu thế theo kết quả đối chứng phi sinh học với MnO2. Ở pha hiếu khí, MnOB gián tiếp hỗ trợ khử màu bằng cách oxy hóa Mn(II) tạo bio-MnO₂, giúp hiệu quả khử màu tổng thể của hệ vượt 95%. COD (~50 mg/L) và TOC (~20 mg/L) tồn dư nhận thấy cần tối ưu thêm giai đoạn hiếu khí hoặc kết hợp công nghệ oxi hóa bậc cao để phân huỷ hoàn toàn thuốc nhuộm.
Tài liệu tham khảo
-
[1] Č. Novotný et al., “Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes,” Chemosphere, vol. 63, no. 9, pp. 1436–1442, Jun. 2006, doi: 10.1016/j.chemosphere.2005.10.002.
[2] T. Robinson, R. Marchant, and P. Nigam, “Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative,” Bioresource Technology, 2001.
[3] H. Li, Y. Wang, Y. Wang, H. Wang, K. Sun, and Z. Lu, “Bacterial degradation of anthraquinone dyes,” Journal of Zhejiang University Science B, vol. 20, no. 6, pp. 528–540, Jun. 2019, doi: 10.1631/jzus.B1900165.
[4] N. Miyata, Y. Tani, M. Sakata, and K. Iwahori, “Microbial manganese oxide formation and interaction with toxic metal ions,” Journal of Bioscience and Bioengineering, vol. 104, no. 1, pp. 1–8, Jul. 2007, doi: 10.1263/jbb.104.1.
[5] B. M. Tebo et al., “Biogenic manganese oxides: Properties and mechanisms of formation,” Annual Review of Earth and Planetary Sciences, vol. 32, no. 1, pp. 287–328, May 2004, doi: 10.1146/annurev.earth.32.101802.120213.
[6] F. Abiri, N. Fallah, and B. Bonakdarpour, “Sequential anaerobic–aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater,” Water Science and Technology, vol. 75, no. 6, pp. 1261–1269, Mar. 2017, doi: 10.2166/wst.2016.531.
[7] I. K. Kapdan and S. Alparslan, “Application of anaerobic–aerobic sequential treatment system to real textile wastewater for color and COD removal,” Enzyme and Microbial Technology, vol. 36, no. 2–3, pp. 273–279, Feb. 2005, doi: 10.1016/j.enzmictec.2004.08.040.
[8] F. P. Van Der Zee and S. Villaverde, “Combined anaerobic–aerobic treatment of azo dyes – A short review of bioreactor studies,” Water Research, vol. 39, no. 8, pp. 1425–1440, Apr. 2005, doi: 10.1016/j.watres.2005.03.007.
[9] A. Tawfik, D. F. Zaki, and M. K. Zahran, “Degradation of reactive dyes wastewater supplemented with cationic polymer (Organo Pol.) in a down flow hanging sponge (DHS) system,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 4, pp. 2059–2065, Jul. 2014, doi: 10.1016/j.jiec.2013.09.031.
[10] T. Onodera et al., “Characterization of the retained sludge in a down-flow hanging sponge (DHS) reactor with emphasis on its low excess sludge production,” Bioresource Technology, vol. 136, pp. 169–175, May 2013, doi: 10.1016/j.biortech.2013.02.096.
[11] A. Zidan, M. Nasr, M. Fujii, and M. G. Ibrahim, “Environmental and economic evaluation of downflow hanging sponge reactors for treating high-strength organic wastewater,” Sustainability, vol. 15, no. 7, p. 6038, Mar. 2023, doi: 10.3390/su15076038.
[12] I. Machdar, Y. Sekiguchi, H. Sumino, A. Ohashi, and H. Harada, “Combination of a UASB reactor and a curtain type DHS (downflow hanging sponge) reactor as a cost-effective sewage treatment system for developing countries,” Water Science and Technology, vol. 42, no. 3–4, pp. 83–88, Aug. 2000, doi: 10.2166/wst.2000.0362.
[13] G. Yan et al., “Adsorption–oxidation mechanism of δ-MnO2 to remove methylene blue,” Adsorption Science & Technology, vol. 2021, Jan. 2021, doi: 10.1155/2021/3069392.
[14] S. Zhou, Z. Du, X. Li, Y. Zhang, Y. He, and Y. Zhang, “Degradation of methylene blue by natural manganese oxides: kinetics and transformation products,” Royal Society Open Science, vol. 6, no. 7, p. 190351, Jul. 2019, doi: 10.1098/rsos.190351.
[15] M. Hamza et al., “Catalytic removal of Alizarin Red using chromium manganese oxide nanorods: degradation and kinetic studies,” Catalysts, vol. 10, no. 10, p. 1150, Oct. 2020, doi: 10.3390/catal10101150.
[16] H. K. Shon, S. Vigneswaran, and S. A. Snyder, “Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment,” Critical Reviews in Environmental Science and Technology, vol. 36, no. 4, pp. 327–374, Aug. 2006, doi: 10.1080/10643380600580011.
[17] A. Pandey, P. Singh, and L. Iyengar, “Bacterial decolorization and degradation of azo dyes,” International Biodeterioration & Biodegradation, vol. 59, no. 2, pp. 73–84, Mar. 2007, doi: 10.1016/j.ibiod.2006.08.006.
[18] I. K. Kapdan, M. Tekol, and F. Sengul, “Decolorization of simulated textile wastewater in an anaerobic–aerobic sequential treatment system,” Process Biochemistry, vol. 38, no. 7, pp. 1031–1037, Feb. 2003, doi: 10.1016/S0032-9592(02)00238-8.
[19] D. Ma, J. Wu, P. Yang, and M. Zhu, “Coupled manganese redox cycling and organic carbon degradation on mineral surfaces,” Environmental Science & Technology, vol. 54, no. 14, pp. 8801–8810, Jul. 2020, doi: 10.1021/acs.est.0c02065.
[20] Y. Cai, K. Yang, C. Qiu, Y. Bi, B. Tian, and X. Bi, “A review of manganese-oxidizing bacteria (MnOB): applications, future concerns, and challenges,” International Journal of Environmental Research and Public Health, vol. 20, no. 2, p. 1272, Jan. 2023, doi: 10.3390/ijerph20021272.
[21] C. A. Zeiner et al., “Mechanisms of manganese(II) oxidation by filamentous ascomycete fungi vary with species and time as a function of secretome composition,” Frontiers in Microbiology, vol. 12, p. 610497, Feb. 2021, doi: 10.3389/fmicb.2021.610497.
[22] A. Piazza, L. Ciancio Casalini, V. A. Pacini, G. Sanguinetti, J. Ottado, and N. Gottig, “Environmental bacteria involved in manganese(II) oxidation and removal from groundwater,” Frontiers in Microbiology, vol. 10, p. 119, Feb. 2019, doi: 10.3389/fmicb.2019.00119.
[23] A. Fareed, H. Zaffar, M. Bilal, J. Hussain, C. Jackson, and T. A. Naqvi, “Decolorization of azo dyes by a novel aerobic bacterial strain Bacillus cereus strain ROC,” PLoS ONE, vol. 17, no. 6, p. e0269559, Jun. 2022, doi: 10.1371/journal.pone.0269559.
[24] I.-S. Ng, T. Chen, R. Lin, X. Zhang, C. Ni, and D. Sun, “Decolorization of textile azo dye and Congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01,” Applied Microbiology and Biotechnology, vol. 98, no. 5, pp. 2297–2308, Mar. 2014, doi: 10.1007/s00253-013-5151-z.

