Micro grid solar-wind-biomass hybrid renewable energy system
Tóm tắt: 120
|
PDF: 68
##plugins.themes.academic_pro.article.main##
Author
-
Bui Thi Minh TuThe University of Danang - University of Science and Technology, VietnamNguyen Van TrieuThe University of Danang - University of Science and Technology, VietnamCao Xuan TuanThe University of Danang, Vietnam
Từ khóa:
Tóm tắt
This study evaluates the performance of a Solar-Wind-Biomass Hybrid Renewable Energy System (SWB-HRES) optimized for Hoa Bac conditions. The system comprises a 15 kW solar panel, 9 kW wind turbine, 8.3 kW syngas generator, 20 kW electrolyzer, 24 kW converter, and a 1 kg hydrogen storage tank. It supplies 7,300 kWh/year of electricity and produces 1,183 kg/year of hydrogen. When integrated with a hydrogen production grid, the solar-biomass (SB-H2) configuration demonstrates superior economic and environmental performance, offering double the profit and half the payback period compared to the wind-biomass (WB-H2) option. The economic viability of hydrogen production matches that of grid electricity sales when hydrogen is priced at $4.5/kg (non-continuous engine operation) or $5/kg (intermittent operation). Incorporating biomass significantly reduces greenhouse gas emissions: while a solar-wind system without hydrogen production cuts 33 tons CO₂-eq/year, the solar-wind-biomass system with hydrogen production achieves a reduction of 217 tons CO₂-eq/year.
Tài liệu tham khảo
-
[1] W. K. Hussam, E. M. Barhoumi, M. Abdul-Niby, and G. J. Sheard, “Techno-economic analysis and optimization of hydrogen production from renewable hybrid energy systems: Shagaya renewable power plant-Kuwait”, Int. J. Hydrogen Energy, vol. 58, pp. 56–68, 2024. https://doi.org/10.1016/j.ijhydene.2024.01.153
[2] C. Tarhan and M. A. Çil, “A study on hydrogen, the clean energy of the future: Hydrogen storage methods”, J. Energy Storage, vol. 40, p. 102676, 2021. https://doi.org/10.1016/j.est.2021.102676
[3] M. Nasser, T. F. Megahed, S. Ookawara, and H. Hassan, “Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic”, Energy Convers. Manag., vol. 267, p. 115870, 2022. https://doi.org/10.1016/j.enconman.2022.115870
[4] Y. Devrim and L. Bilir, “Performance investigation of a wind turbine–solar photovoltaic panels–fuel cell hybrid system installed at İncek region – Ankara, Turkey”, Energy Convers. Manag., vol. 126, pp. 759–766, 2016. https://doi.org/10.1016/j.enconman.2016.08.062
[5] V. G. Bui, T. H. Vo, T. M. T. Bui, L. B. T. Truong, and T. X. N. Thi, “Characteristics of biogas-hydrogen engines in a hybrid renewable energy system”, Int. Energy J., vol. 21, no. 4, pp. 467–480, Dec. 2021. http://www.rericjournal.ait.ac.th/index.php/reric/article/view/2785
[6] M. Nasser, T. F. Megahed, S. Ookawara, and H. Hassan, “Techno-economic assessment of clean hydrogen production and storage using hybrid renewable energy system of PV/Wind under different climatic conditions”, Sustain. Energy Technol. Assess., vol. 52, p. 102195, 2022. https://doi.org/10.1016/j.seta.2022.102195
[7] E. Akyuz, Z. Oktay, and I. Dincer, “Performance investigation of hydrogen production from a hybrid wind-PV system”, Int. J. Hydrogen Energy, vol. 37, no. 21, pp. 16623–16630, 2012. https://doi.org/10.1016/j.ijhydene.2012.02.149
[8] M. M. Hasan and G. Genç, “Techno-economic analysis of solar/wind power based hydrogen production”, Fuel, vol. 324, p. 124564, 2022. https://doi.org/10.1016/j.fuel.2022.124564
[9] A. Alzahrani, S. K. Ramu, G. Devarajan, I. Vairavasundaram, and S. Vairavasundaram, “A review on hydrogen-based hybrid microgrid system: Topologies for hydrogen energy storage, integration, and energy management with solar and wind energy”, Energies, vol. 15, no. 21, p. 7979, 2022. https://doi.org/10.3390/en15217979
[10] P. C. Okonkwo et al., “Utilization of renewable hybrid energy for refueling station in Al-Kharj, Saudi Arabia”, Int. J. Hydrogen Energy, vol. 47, no. 53, pp. 22273–22284, 2022. https://doi.org/10.1016/j.ijhydene.2022.05.040
[11] M. Garcia G. and S. Oliva H., “Technical, economic, and CO₂ emissions assessment of green hydrogen production from solar/wind energy: The case of Chile”, Energy, vol. 278, p. 127981, 2023. https://doi.org/10.1016/j.energy.2023.127981
[12] A. Khalilnejad and G. Riahy, “A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer”, Energy Convers. Manag., vol. 80, pp. 398–406, 2014. https://doi.org/10.1016/j.enconman.2014.01.040
[13] R. Dufo-López, J. L. Bernal-Agustín, and J. Contreras, “Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage”, Renew. Energy, vol. 32, no. 7, pp. 1102–1126, 2007. https://doi.org/10.1016/j.renene.2006.04.013
[14] H. Demir, “Design and optimization of hybrid renewable energy systems for hydrogen production at Aksaray University campus”, Process Saf. Environ. Prot., vol. 192, pp. 543–556, 2024. https://doi.org/10.1016/j.psep.2024.10.080
[15] P. Swaminathan et al., “A comprehensive review of microbial electrolysis cells: Integrated for wastewater treatment and hydrogen generation”, Process Saf. Environ. Prot., vol. 190, pp. 458–474, 2024. https://doi.org/10.1016/j.psep.2024.08.032
[16] M. Gökçek and M. S. Genç, “Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey”, Appl. Energy, vol. 86, no. 12, pp. 2731–2739, 2009. https://doi.org/10.1016/j.apenergy.2009.03.025
[17] M. I. Taipabu, K. Viswanathan, W. Wu, N. Hattu, and A. Atabani, “A critical review of the hydrogen production from biomass-based feedstocks: Challenge, solution, and future prospect”, Process Saf. Environ. Prot., vol. 164, pp. 384–407, 2022. https://doi.org/10.1016/j.psep.2022.06.006
[18] A. L. Bukar, S. Chaitusaney, and K. Kawabe, “Optimal design of on-site PV-based battery grid-tied green hydrogen production system”, Energy Convers. Manag., vol. 307, p. 118378, 2024. https://doi.org/10.1016/j.enconman.2024.118378
[19] Y. Kalinci, A. Hepbasli, and I. Dincer, “Techno-economic analysis of a stand-alone hybrid renewable energy system with hydrogen production and storage options”, Int. J. Hydrogen Energy, vol. 40, no. 24, pp. 7652–7664, 2015. https://doi.org/10.1016/j.ijhydene.2014.10.147
[20] O. Onar, M. Uzunoglu, and M. Alam, “Modeling, control and simulation of an autonomous wind turbine/photovoltaic/fuel cell/ultra-capacitor hybrid power system”, J. Power Sources, vol. 185, no. 2, pp. 1273–1283, 2008. https://doi.org/10.1016/j.jpowsour.2008.08.083
[21] V. G. Bui, T. M. T. Bui, V. N. Tran, Z. Huang, A. T. Hoang, W. Tarelko, V. H. Bui, X. M. Pham, and P. Q. P. Nguyen, “Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters”, Int. J. Hydrogen Energy, vol. 48, no. 18, pp. 6722–6737, 2023. https://doi.org/10.1016/j.ijhydene.2022.09.133
[22] V. G. Bui, T. M. T. Bui, V. G. Nguyen, V. N. Tran, L. B. T. Truong, and L. H. P. Pham, “Concept of twining injector system for spark-ignition engine fueled with syngas-biogas-hydrogen operating in solar-biomass hybrid energy system”, Int. J. Hydrogen Energy, vol. 48, no. 18, pp. 6871–6890, 2023. https://doi.org/10.1016/j.ijhydene.2022.11.076
[23] J. Armijo and C. Philibert, “Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina”, Int. J. Hydrogen Energy, vol. 45, no. 3, pp. 1541–1558, 2020. https://doi.org/10.1016/j.ijhydene.2019.11.028
[24] A. Fopah-Lele, A. Kabore-Kere, J. G. Tamba, and I. Yaya-Nadjo, “Solar electricity storage through green hydrogen production: A case study”, Int. J. Energy Res., vol. 45, no. 9, pp. 13007–13021, 2021. https://doi.org/10.1002/er.6630
[25] M. Koleva, O. J. Guerra, J. Eichman, B. Hodge, and J. Kurtz, “Optimal design of solar-driven electrolytic hydrogen production systems within electricity markets”, J. Power Sources, vol. 483, p. 229183, 2021. https://doi.org/10.1016/j.jpowsour.2020.229183
[26] C. Mokhtara, B. Negrou, N. Settou, A. Bouferrouk, and Y. Yao, “Design optimization of grid-connected PV-Hydrogen for energy prosumers considering sector-coupling paradigm: Case study of a university building in Algeria”, Int. J. Hydrogen Energy, vol. 46, no. 75, pp. 37564–37582, 2021. https://doi.org/10.1016/j.ijhydene.2020.10.069
[27] S. Touili, A. Alami Merrouni, A. Azouzoute, Y. El Hassouani, and A. Amrani, “A technical and economical assessment of hydrogen production potential from solar energy in Morocco”, Int. J. Hydrogen Energy, vol. 43, no. 51, pp. 22777–22796, 2018. https://doi.org/10.1016/j.ijhydene.2018.10.136
[28] R. A. Abdelsalam, M. Mohamed, H. E. Farag, and E. F. El-Saadany, “Green hydrogen production plants: A techno-economic review”, Energy Convers. Manag., vol. 319, p. 118907, 2024. https://doi.org/10.1016/j.enconman.2024.118907
[29] E. B. Agyekum, “Is Africa ready for green hydrogen energy takeoff? – A multi-criteria analysis approach to the opportunities and barriers of hydrogen production on the continent”, Int. J. Hydrogen Energy, vol. 49, pp. 219–233, 2024. https://doi.org/10.1016/j.ijhydene.2023.07.229
[30] J. Park, K. H. Ryu, C. Kim, W. C. Cho, M. Kim, J. H. Lee, H. Cho, and J. H. Lee, “Green hydrogen to tackle the power curtailment: Meteorological data-based capacity factor and techno-economic analysis”, Appl. Energy, vol. 340, p. 121016, 2023. https://doi.org/10.1016/j.apenergy.2023.121016
[31] S. Naderi, M. Banifateme, O. Pourali, A. Behbahaninia, I. MacGill, and G. Pignatta, “Accurate capacity factor calculation of waste-to-energy power plants based on availability analysis and design/off-design performance”, J. Clean. Prod., vol. 275, p. 123167, 2020. https://doi.org/10.1016/j.jclepro.2020.123167
[32] R. Bhandari, B. Kumar, and F. Mayer, “Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors”, J. Clean. Prod., vol. 277, p. 123385, 2020. https://doi.org/10.1016/j.jclepro.2020.123385
[33] T. X. Nguyen-Thi, T. M. T. Bui, and V. G. Bui, “Simulation and experimental study of refuse-derived fuel gasification in an updraft gasifier”, Int. J. Renew. Energy Dev., vol. 12, no. 3, pp. 601–614, 2023. https://doi.org/10.14710/ijred.2023.53994
[34] M. T. Phung, V. G. Bui, and T. S. Tran, “Simulation and experimental study on refuse derived fuel gasification in a downdraft gasifier”, in Proc. 3rd Annu. Int. Conf. Material, Machines and Methods for Sustainable Development (MMMS2022), Lecture Notes in Mechanical Engineering, B. T. Long et al., Eds. Cham: Springer, 2024. https://doi.org/10.1007/978-3-031-39090-6_43
[35] A. Navarrete and Y. Zhou, “The price of green hydrogen: How and why we estimate future production costs”, Int. Counc. Clean Transp., May 20, 2024. https://theicct.org/the-price-of-green-hydrogen-estimate-future-production-costs-may24/

