Strengths and plastic shrinkage cracking resistance of mortar overlays incorporating steel slag and rubber aggregates for concrete pavement repair
Tóm tắt: 127
|
PDF: 101
##plugins.themes.academic_pro.article.main##
Author
-
Phat NguyenThe University of Danang - University of Science and Technology, VietnamPhuong N. PhamThe University of Danang - University of Science and Technology, Vietnam
Từ khóa:
Tóm tắt
This paper investigated the compressive strength, flexural tensile strength, abrasion resistance, and resistance to plastic shrinkage cracking of mortar overlay for concrete pavements with three sand replacement ratios by volume: control (no incorporation), 30% steel slag (30SSA), 30% rubber aggregates (30RA), and a combination of 15% SSA and 15% RA (15SSA15RA). The results indicate that most mixtures satisfied the flexural strength requirement (> 4 MPa) and exhibited adequate abrasion resistance for all road classifications (< 0.3 g/cm²), except for the mortar incorporating 30% RA, which failed to achieve the required flexural capacity. Notably, the mortar with SSA revealed a higher resistance to plastic shrinkage cracking. The 15SSA15RA mixture, in particular, exhibited no visible cracks, demonstrating its effectiveness in mitigating shrinkage and resulting cracking when incorporating SSA and RA. The findings promotes the application of rubber-steel slag mortar in concrete pavement repair for the sustainable reuse of by-products in road construction.
Tài liệu tham khảo
-
[1] F. Liu, B. Pan, C. Zhou, and J. Nie, “Repair interface crack resistance mechanism: A case of magnesium phosphate cement overlay repair cement concrete pavement surface,” Dev. Built Environ., vol. 17, p. 100355, 2024, doi: 10.1016/j.dibe.2024.100355.
[2] Repair of jointed plain concerte pavement - specifications for construction and acceptance, TCCS 12:2016/TCĐBVN, pp. 1–51, 2016.
[3] Z. Zhao, X. Guan, F. Xiao, Z. Xie, P. Xia, and Q. Zhou, “Applications of asphalt concrete overlay on Portland cement concrete pavement,” Constr. Build. Mater., vol. 264, p. 120045, 2020, doi: 10.1016/j.conbuildmat.2020.120045.
[4] A. Manawadu, P. Qiao, and H. Wen, “Characterization of Substrate-to-Overlay Interface Bond in Concrete Repairs: A Review,” Constr. Build. Mater., vol. 373, no. March, 2023, doi: 10.1016/j.conbuildmat.2023.130828.
[5] National Concrete Pavement Technology Center, “Guide to Concrete Overlay Solutions,” www.concreteparking.org, 2007, [Online]. Available: https://www.concreteparking.org/downloads/guide_concrete_overlays.pdf [Accessed April 02, 2025].
[6] S. Austin, P. Robins, and Y. Pan, “Shear bond testing of concrete repairs,” Cem. Concr. Res., vol. 29, no. 7, pp. 1067–1076, 1999, doi: 10.1016/S0008-8846(99)00088-5.
[7] M. Rith, Y. K. Kim, S. W. Lee, J. Y. Park, and S. H. Han, “Analysis of in situ bond strength of bonded concrete overlay,” Constr. Build. Mater., vol. 111, pp. 111–118, 2016, doi: 10.1016/j.conbuildmat.2016.02.062.
[8] S. Gholami, J. Hu, and Y. R. Kim, “Assessment of bonding, durability, and low-temperature performance of cement-based rapid patching materials for pavement repair,” Int. J. Pavement Eng., vol. 24, no. 2, pp. 1–11, 2023, doi: 10.1080/10298436.2022.2120990.
[9] W. W. A. Zailani, N. M. Apandi, A. Adesina, U. J. Alengaram, M. A. Faris, and M. F. M. Tahir, “Physico-mechanical properties of geopolymer mortars for repair applications: Impact of binder to sand ratio,” Constr. Build. Mater., vol. 412, p. 134721, 2024, doi: 10.1016/j.conbuildmat.2023.134721.
[10] K. Momeni, N. I. Vatin, M. Hematibahar, and T. H. Gebre, “Repair overlays of modified polymer mortar containing glass powder and composite fibers-reinforced slag: mechanical properties, energy absorption, and adhesion to substrate concrete,” Front. Built Environ., vol. 10, pp. 1–10, 2024, doi: 10.3389/fbuil.2024.1479849.
[11] M. A. Al-Osta, S. Ahmad, M. K. Al-Madani, H. R. Khalid, M. Al-Huri, and A. Al-Fakih, “Performance of bond strength between ultra-high-performance concrete and concrete substrates (concrete screed and self-compacted concrete): An experimental study,” J. Build. Eng., vol. 51, p. 104291, 2022, doi: 10.1016/j.jobe.2022.104291.
[12] Products and systems for the protection and repair of concrete structures – Part 3: Structural and non-structural repair, EN 1504-3, Eur. Comm. Stand. (CEN), Brussels, Belgium, 2005.
[13] C. Sprinkel, M. M. Ozyildirim, “Evaluation of hydraulic cement concrete overlays placed on three pavements in Virginia,” Proc. Int. Conf. Concr. Pavements, vol. 3, no. August, p. 662, 2000, doi: 10.33593/iccp.v7i1.254.
[14] B. Bissonnette, L. Courard, H. Beushausen, D. Fowler, M. Trevino, and A. Vaysburd, “Recommendations for the repair, the lining or the strengthening of concrete slabs or pavements with bonded cement-based material overlays,” Mater. Struct. Constr., vol. 46, no. 3, pp. 481–494, 2013, doi: 10.1617/s11527-012-9929-8.
[15] F. Li, Q. Chen, Y. Lu, Y. Zou, and S. Li, “Mitigating drying shrinkage and enhancing mechanical strength of fly ash-based geopolymer paste with functionalized MWCNTs grafted with silane coupling agent,” Cem. Concr. Compos., vol. 143, no. March, p. 105250, 2023, doi: 10.1016/j.cemconcomp.2023.105250.
[16] P. N. Pham, Y. Zhuge, A. Turatsinze, A. Toumi, and R. Siddique, “Application of rubberized cement-based composites in pavements: Suitability and considerations,” Constr. Build. Mater., vol. 223, pp. 1182–1195, 2019, doi: 10.1016/j.conbuildmat.2019.08.007.
[17] N. P. Pham, A. Toumi, and A. Turatsinze, “Rubber aggregate-cement matrix bond enhancement: Microstructural analysis, effect on transfer properties and on mechanical behaviours of the composite,” Cem. Concr. Compos., vol. 94, pp. 1–12, 2018, doi: 10.1016/j.cemconcomp.2018.08.005.
[18] C. T. Nguyen, P. N. Pham, H. P. Nam, and P. Nguyen, “Factors affecting compressive strength of steel slag concrete: A systematic literature review,” J. Build. Eng., vol. 100, p. 111686, 2025, doi: 10.1016/j.jobe.2024.111686.
[19] P. Pham, C. T. Nguyen, and P. Hao, “Mechanical properties, plastic shrinkage cracking resistance and water absorption of paving concrete using steel slag and rubber aggregates,” J. Sci. Technol. Civ. Eng. (JSTCE) - HUCE, vol. 17, 2023, doi: 10.31814/stce.huce2023-17(2V)-12.
[20] Standard specification for concrete aggregates, ASTM C33-C33M, 2018.
[21] Blended porland cements, TCVN 6260:2020, 2020.
[22] Mortar for masonry - Test methods, TCVN 3121:2003, pp. 1–33, 2003.
[23] Hardened concrete - Test method for abrasion, TCVN 3114:2022, 2022.
[24] Standard for test methods of long-term performance and durability of ordinary concrete, GB/T 50082:2009, pp. 3–46, 2009.
[25] S. W. Kim, Y. J. Lee, Y. J. Jung, J. Y. Lee, and K. H. Kim, “Applicability of electric arc furnace oxidizing slag aggregates for RC columns subjected to combined bending and axial loads,” Mater. Res. Innov., vol. 18, pp. S2793–S2798, 2014, doi: 10.1179/1432891714Z.000000000560.
[26] Specitications for construction and acceptance of portland cement concrete pavement for highway, TCCS 40:2022/TCĐBVN, pp. 1–62, 2022.
[27] T. M. Pham et al., “Dynamic compressive properties of lightweight rubberized geopolymer concrete,” Constr. Build. Mater., vol. 265, p. 120753, 2020, doi: 10.1016/j.conbuildmat.2020.120753.
[28] S. Zhai et al., “Investigation on the influence of modified waste rubber powder on the abrasion resistance of concrete,” Constr. Build. Mater., vol. 357, p. 129409, 2022, doi: 10.1016/j.conbuildmat.2022.129409.
[29] I. Santamaría-Vicario, A. Rodríguez, S. Gutiérrez-González, and V. Calderón, “Design of masonry mortars fabricated concurrently with different steel slag aggregates,” Constr. Build. Mater., vol. 95, pp. 197–206, 2015, doi: 10.1016/j.conbuildmat.2015.07.164.
[30] Y. Guo, J. Xie, J. Zhao, and K. Zuo, “Utilization of unprocessed steel slag as fine aggregate in normal- and high-strength concrete,” Constr. Build. Mater., vol. 204, pp. 41–49, 2019, doi: 10.1016/j.conbuildmat.2019.01.178.

