Mô hình hóa sự lan truyền tin đồn trong nhà trường bằng mô hình toán học: từ phân tích đến giải pháp
Tóm tắt: 58
|
PDF: 18
##plugins.themes.academic_pro.article.main##
Author
-
Vu Thi Bich HauDepartment of Agriculture and Environment of Da Nang City, VietnamTran Hoang KienPhan Chau Trinh High School, Da Nang, VietnamNguyen Duc Gia BaoPhan Chau Trinh High School, Da Nang, VietnamVo Le Phuong DungPhan Chau Trinh High School, Da Nang, VietnamTran Huy VuThe University of Danang - University of Science and Technology, Vietnam
Từ khóa:
Tóm tắt
Nghiên cứu đề xuất mô hình toán học tích hợp dựa trên SIR và SEIR để phân tích, kiểm soát lan truyền tin đồn trong trường học Việt Nam, cung cấp giải pháp dựa trên bằng chứng cho quản lý giáo dục. Tích hợp độ trễ thời gian (giai đoạn do dự) và hàm kiểm soát (giáo dục, đính chính), tham số được hiệu chỉnh từ khảo sát 520 học sinh tại 20 trường Trung học cơ sở và 20 trường Trung học phổ thông ở Đà Nẵng. Bốn kịch bản mô phỏng bao gồm: gốc, có yếu tố tác động, miễn nhiễm, và can thiệp. Kết quả cho thấy, SEIR kịch bản can thiệp hiệu quả nhất, giảm đỉnh lan truyền (Imax) còn 3,6% (19/520) sau 8,01 ngày, so với 30,8% (160/520) sau 23,14 ngày trong SIR gốc, giảm Rfinal từ 470 xuống 442. Phân tích độ nhạy xác nhận β (lây nhiễm) tác động mạnh hơn γ (loại bỏ). Chiến lược đề xuất: ngắn hạn tăng γ bằng thông tin chính thống, dài hạn giảm β qua giáo dục kỹ năng số. Mô hình hỗ trợ dự báo, giảm tác hại tin đồn.
Tài liệu tham khảo
-
[1] L. Zhao, X. Qiu, X. Wang, and J. Wang, “Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks,” Physica A: Statistical Mechanics and its Applications, vol. 392, no. 4, pp. 987-994, 2013. https://doi.org/10.1016/j.physa.2012.10.031
[2] L. Zhu, M. Zhou, and Z. Zhang, “Dynamical analysis and control strategies of rumor spreading models in both homogeneous and heterogeneous networks,” Journal of Nonlinear Science, vol. 30, no. 6, pp. 2545-2576, 2020. https://doi.org/10.1007/s00332-020-09629-6
[3] S. Al-Tuwairqi, S. Al-Sheikh, and R. Al-Amoudi, “Qualitative analysis of a rumor transmission model with incubation mechanism,” Open Access Library Journal, vol. 2, no. 11, pp. 1-12, 2015. http://dx.doi.org/10.4236/oalib.1102040
[4] M. Ghosh, P. Das, and P. Das, “A comparative study of deterministic and stochastic dynamics of rumor propagation model with counter-rumor spreader,” Nonlinear Dynamics, vol. 111, no. 18, pp. 16875-16894, 2023. https://doi.org/10.1007/s11071-023-08768-1
[5] Y. M. R. Marbun, T. Tulus, S. Sutarman, and E. Herawati, “Dynamic Analysis of Rumor Spreading Models in Social Networks with Time Delay,” Information Sciences Letters, vol. 12, no. 10, 2023. https://digitalcommons.aaru.edu.jo/isl/vol12/iss10/18
[6] H. A. N. Bünyamin, “Management techniques for organizational rumor and gossip in schools,” Dinamika Ilmu, vol. 21, no. 1, pp. 177-203, 2021. https://doi.org/10.21093/di.v21i1.3275
[7] D. Xu, X. Xu, Y. Xie, and C. Yang, “Optimal control of an SIVRS epidemic spreading model with virus variation based on complex networks,” Communications in Nonlinear Science and Numerical Simulation, vol. 48, pp. 200-210, 2017. https://doi.org/10.1016/j.cnsns.2016.12.025
[8] H. Sun, Y. Sheng, and Q. Cui, “An uncertain SIR rumor spreading model,” Advances in Difference Equations, vol. 2021, no. 1, p. 286, 2021. https://doi.org/10.1186/s13662-021-03386-w
[9] K. Afassinou, “Analysis of the impact of education rate on the rumor spreading mechanism,” Physica A: Statistical Mechanics and Its Applications, vol. 414, pp. 43-52, 2014. https://doi.org/10.1016/j.physa.2014.07.041
[10] C. M. Batistela, M. A. Cabrera, A. C. Godoi, and J.R. Piqueira, “SIR model for rumor propagation,” ENOC, 2020.
[11] F. I. Maulana and Y. Ramdani, “Python Application to SEIR Model of the Spread of Malaria,” BIOS: Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 5, no. 2, pp. 150-160, 2024. https://doi.org/10.37148/bios.v5i2.151
[12] Q. Liu, T. Li, and M. Sun, “The analysis of an SEIR rumor propagation model on heterogeneous network,” Physica A: Statistical Mechanics and its Applications, vol. 469, pp. 372-380, 2017. https://doi.org/10.1016/j.physa.2016.11.067
[13] I. Dehaj, A. Dehaj, A. Tridane, M.A. Aziz-Alaoui, and M. Rachik, “A novel approach in controlling the spread of a rumor within a crowd,” Results in Control and Optimization, vol. 18, p. 100534, 2025. https://doi.org/10.1016/j.rico.2025.100534
[14] X. Chen and N. Wang, “Rumor spreading model considering rumor credibility, correlation and crowd classification based on personality,” Scientific Reports, vol. 10, no. 1, p. 5887, 2020. https://doi.org/10.1038/s41598-020-62585-9
[15] M. Barro, A. Guiro, and D. Ouedraogo, “Optimal control of a SIR epidemic model with general incidence function and a time delays,” Cubo (Temuco), vol. 20, no. 2, pp. 53-66, 2018. http://dx.doi.org/10.4067/S0719-06462018000200053
[16] S. Chen, H. Jiang, L. Li, and J. Li, “Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks,” Chaos, Solitons & Fractals, vol. 140, p. z110206, 2020. https://doi.org/10.1016/j.chaos.2020.110206
[17] K. Myilsamy, M.S. Kumar, and A.S. Kumar, “Optimal control of a rumor propagation model in online social network by considering influential nodes,” Results in Control and Optimization, vol. 14, p. 100339, 2024. https://doi.org/10.1016/j.rico.2023.100339
[18] H. Wang, S. Kang, and Y. Hu, “Dynamic analysis and optimal control of rumor propagation models considering different education levels and hesitation mechanisms,” AIMS Mathematics, vol. 9, no. 8, pp. 20089-20117, 2024. https://doi.org/0.3934/math.2024979
[19] F. Vazquez, “Modeling and analysis of social phenomena: challenges and possible research directions,” Entropy, vol. 24, no. 4, p. 491, 2022. https://doi.org/10.3390/e24040491
[20] S. R. Septyawan, E. Y. Bunga, N. Nuraini, and J. P. Arcede, “The Spread of Rumors in Society: A Mathematical Modeling Approach in Election Case Studies,” Communication in Biomathematical Sciences, vol. 7, no. 2, pp. 202-218, 2024. https://doi.org/10.5614/cbms.2022.7.2.3
[21] A. N. Zehmakan, C. Out, and S. H. Khelejan, “Why rumors spread fast in social networks, and how to stop it,” arXiv preprint arXiv:2305.08558, 2023. https://doi.org/10.48550/arXiv.2305.08558
[22] L. Giang, “Application of the suscepbible-infected-removed model for forecasting and evaluating COVID-19 infection in Hanoi,” Vietnam Journals Online- VJOL, vol. 58, no. 2, 2022.
[23] Y. Liu, “Rumor spreading model considering education and remembering mechanism,” International Journal of Media, Journalism and Mass Communications (IJMJMC), vol. 2, no. 3, pp. 1-6, 2016. http://dx.doi.org/10.20431/2454-9479.0203001
[24] S. H. Tseng and N. T. Son, “Agent-based modeling of rumor propagation using expected integrated mean squared error optimal design,” Applied System Innovation, vol. 3, no. 4, p. 48, 2020. https://doi.org/10.3390/asi3040048
[25] X. Wang, Y. Li, J. Li, Y. Liu, and C. Qiu, “A rumor reversal model of online health information during the Covid-19 epidemic,” Information Processing & Management, vol. 58, no. 6, p. 102731, 2021. https://doi.org/10.1016/j.ipm.2021.102731

