Lightweight fall detection on edge devices via knowledge distillation
Tóm tắt: 199
|
PDF: 88
##plugins.themes.academic_pro.article.main##
Author
-
Quang Nhut PhamThe University of Danang - University of Science and Technology, VietnamDuy Khanh NinhThe University of Danang - University of Science and Technology, Vietnam
Từ khóa:
Tóm tắt
Falls pose a significant risk to the elderly, often leading to severe injuries and medical emergencies. Timely and accurate fall detection is crucial for effective intervention. While vision-based approaches offer high accuracy and non-intrusive monitoring, they typically require large-scale deep learning models, making deployment on resource-constrained edge devices impractical due to high computational demands. To address this challenge, we propose an efficient fall detection framework using knowledge distillation to transfer knowledge from a high-performance teacher model to a compact student model. This approach significantly reduces model complexity without sacrificing accuracy. We apply cross-background and cross-person validation for robust evaluation. Experimental results show our model improves F1-score by up to 7% while requiring only 1/200 of the teacher’s parameters, making it suitable for real-time edge deployment.
Tài liệu tham khảo
-
[1] World Health Organization, “Fall: Fact sheets”, WHO, Geneva, Switzerland, 2021. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/falls. [Accessed April 8, 2025].
[2] D. K. Hoang, N. M. Le, U. P. Vo-Thi, H. G. Nguyen, L. T. Ho-Pham, and T. V. Nguyen, “Mechanography assessment of fall risk in older adults: the Vietnam Osteoporosis Study”, J. Cachexia Sarcopenia Muscle, vol. 12, no. 5, pp. 1161–1167, 2021. https://doi.org/10.1002/jcsm.12751
[3] H. M. Vu, L. H. Nguyen, H. L. T. Nguyen, G. T. Vu, C. T. Nguyen, T. N. Hoang, et al., “Individual and environmental factors associated with recurrent falls in elderly patients hospitalized after falls”, Int. J. Environ. Res. Public Health, vol. 17, no. 7, 2441, 2020. https://doi.org/10.3390/ijerph17072441
[4] A. Muro-De-La-Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla, “Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications”, Sensors, vol. 14, no. 2, pp. 3362–3394, 2014. https://doi.org/10.3390/s140203362
[5] M. A. Khan, A. Saboor, H. C. Kim, and H. Park, “A systematic review of location aware schemes in the Internet of Things”, Sensors, vol. 21, no. 9, 3228, 2021. https://doi.org/10.3390/s21093228
[6] H. Ramirez, S. A. Velastin, I. Meza, E. Fabregas, D. Makris, and G. Farias, “Fall detection and activity recognition using human skeleton features”, IEEE Access, vol. 9, pp. 33532–33542, 2021. doi: 10.1109/ACCESS.2021.3061626
[7] L. Martínez-Villaseñor, H. Ponce, J. Brieva, E. Moya-Albor, J. Núñez-Martínez, and C. Peñafort-Asturiano, “UP-Fall Detection Dataset: A multimodal approach”, Sensors, vol. 19, no. 9, 1988, 2019. https://doi.org/10.3390/s19091988
[8] N. Noor and I. K. Park, “Factorized 3D-CNN for real-time fall detection and action recognition on embedded system”, IEEE Access, vol. 12, pp. 112852–112863, 2024. doi: 10.1109/ACCESS.2024.3443618
[9] W. J. Chang, C. H. Hsu, and L. B. Chen, “A pose estimation-based fall detection methodology using artificial intelligence edge computing”, IEEE Access, vol. 9, pp. 129965–129976, 2021. doi: 10.1109/ACCESS.2021.3113824
[10] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network”, arXiv preprint arXiv:1503.02531, 2015.
[11] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for skeleton-based action recognition”, in Proc. Thirty-Second AAAI Conf. Artif. Intell., New Orleans, Louisiana, USA, 2018, pp. 7444–7452.
[12] F. X. Gaya-Morey, C. Manresa-Yee, and J. M. Buades-Rubio, “Deep learning for computer vision-based activity recognition and fall detection of the elderly: A systematic review”, Appl. Intell., vol. 54, no. 19, pp. 8982–9007, 2024.
[13] J. Nogas, S. S. Khan, and A. Mihailidis, “Deepfall: Noninvasive fall detection with deep spatio-temporal convolutional autoencoders”, J. Healthc. Inform. Res., vol. 4, no. 1, pp. 50–70, 2020.
[14] H. Le Viet, H. Le Hoang Ngoc, K. Tran Dinh Minh, and S. Than Van Hong, “A deep learning framework for gym-gesture recognition using the combination of transformer and 3D pose estimation”, Cybern. Phys., vol. 13, no. 2, pp. 161–167, 2024. doi: 10.35470/2226-4116-2024-13-2-161-167
[15] R. Khanam and M. Hussain, “Yolov11: An overview of the key architectural enhancements”, arXiv preprint arXiv:2410.17725, 2024.
[16] Z. Guan, S. Li, Y. Cheng, C. Man, W. Mao, N. Wong, and H. Yu, “A video-based fall detection network by spatio-temporal joint-point model on edge devices”, in Proc. Design, Autom. & Test Eur. Conf. Exhib. (DATE), Grenoble, France, 2021, pp. 422–427.
[17] O. Keskes and R. Noumeir, “Vision-based fall detection using ST-GCN”, IEEE Access, vol. 9, pp. 28224–28236, 2021. doi: 10.1109/ACCESS.2021.3058219
[18] F. Tung and G. Mori, “Similarity-preserving knowledge distillation”, in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Seoul, Korea (South), 2019, pp. 1365–1374.
[19] Y. Tian, D. Krishnan, and P. Isola, “Contrastive representation distillation”, arXiv preprint arXiv:1910.10699, 2019.
[20] D. Q. Vu, N. Le, and J. C. Wang, “Teaching yourself: A self-knowledge distillation approach to action recognition”, IEEE Access, vol. 9, pp. 105711–105723, 2021. doi: 10.1109/ACCESS.2021.3099856
[21] F. M. Thoker and J. Gall, “Cross-modal knowledge distillation for action recognition”, in Proc. IEEE Int. Conf. Image Process. (ICIP), Taipei, Taiwan, 2019, pp. 6–10.
[22] J. C. E. Guerrero, E. M. España, M. M. Añasco, and J. E. P. Lopera, “Dataset for human fall recognition in an uncontrolled environment”, Data in Brief, vol. 45, 108610, 2022. https://doi.org/10.1016/j.dib.2022.108610
[23] E. Alam, A. Sufian, P. Dutta, M. Leo, and I. A. Hameed, “GMDCSA-24: A dataset for human fall detection in videos”, Data in Brief, vol. 57, 110892, 2024. https://doi.org/10.1016/j.dib.2024.110892
[24] N. N. Rahman et al., “FallVision: A benchmark video dataset for fall detection”, Data in Brief, vol. 59, 111440, 2025. https://doi.org/10.1016/j.dib.2025.111440
[25] B. Kwolek and M. Kepski, “Human fall detection on embedded platform using depth maps and wireless accelerometer”, Comput. Methods Programs Biomed., vol. 117, no. 3, pp. 489–501, 2014. https://doi.org/10.1016/j.cmpb.2014.09.005

