Machine learning-based estimation of power output in solar photovoltaic systems under real-world conditions
Tóm tắt: 206
|
PDF: 80
##plugins.themes.academic_pro.article.main##
Author
-
Kim Anh NguyenThe University of Danang - University of Science and Technology, VietnamDoan Tuan Hung DoThe University of Danang - University of Science and Technology, VietnamHoang Khoa TrinhThe University of Danang - University of Science and Technology, VietnamNgoc Khai NguyenThe University of Danang - University of Science and Technology, VietnamNgoc Bao DoanThe University of Danang - University of Science and Technology, Vietnam
Từ khóa:
Tóm tắt
Precise prediction of DC power output from photovoltaic (PV) systems under real conditions is essential for improving efficiency and detecting degradation. This paper presents a machine learning framework to forecast PV power using electrical signals (e.g., voltage and current) and environmental data (irradiance and temperature). Three regression models -eXtreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), and Artificial Neural Networks (ANN) - were trained on 13,923 samples from a 455.4 kWp solar PV plant in central Vietnam. The XGBoost model delivered the best performance with R² = 0.9998, mean absolute error (MAE) = 1.62 kWh, and root mean square error (RMSE) = 2.209 kWh, outperforming conventional methods. Additionally, the low computational demand of the developed model allows implementation on affordable hardware platforms, such as Raspberry Pi 4, enabling practical real-time monitoring and timely detection of PV performance degradation due to factors like panel defects, natural aging, and dust accumulation.
Tài liệu tham khảo
-
[1] D. C. Jordan, S. R. Kurtz, K. VanSant, and J. Newmiller, “Compendium of photovoltaic degradation rates”, Progress in Photovoltaics: Research and Applications, vol. 24, no. 7, pp. 978–989, 2016. https://doi.org/10.1002/pip.2744
[2] Y. Chen, Y. Liu, Z. Tian, Y. Dong, Y. Zhou, X. Wang, and D. Wang, “Experimental study on the effect of dust deposition on photovoltaic panels”, Energy Procedia, vol. 158, pp. 483–489, 2019. https://doi.org/10.1016/j.egypro.2019.01.139
[3] S. A. Sadat, J. Faraji, M. Naziffard, and A. Ketabi, “The experimental analysis of dust deposition effect on solar photovoltaic panels in Iran’s desert environment”, Sustainable Energy Technologies and Assessments, vol. 47, 2021. https://doi.org/10.1016/j.seta.2021.101542
[4] M. Rashid, M. Yousif, Z. Rashid, A. Muhammad, M. Altaf, and A. Mustafa, “Effect of dust accumulation on the performance of photovoltaic modules for different climate regions”, Heliyon, vol. 9, no. 12, e23069, 2023. https://doi.org/10.1016/j.heliyon.2023.e23069
[5] Z. A. Darwish, K. Sopian, and A. Fudholi, “Reduced output of photovoltaic modules due to different types of dust particles”, Journal of Cleaner Production, vol. 280, 124317, 2021. https://doi.org/10.1016/j.jclepro.2020.124317
[6] T. M. A. Alnasser, A. M. J. Mahdy, K. I. Abass, M. T. Chaichan, and H. A. Kazem, “Impact of dust ingredient on photovoltaic performance: An experimental study”, Solar Energy, vol. 195, pp. 651–659, 2020. https://doi.org/10.1016/j.solener.2019.12.008
[7] A. A. Hachicha, I. Al-Sawafta, and Z. Said, “Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions”, Renewable Energy, vol. 141, pp. 287–297, 2019. https://doi.org/10.1016/j.renene.2019.04.004
[8] Y. Shen, M. Fouladjiard, and A. Grall, “Impact of dust and temperature on photovoltaic panel performance: A model-based approach to determine optimal cleaning frequency”, Heliyon, vol. 10, e25390, 2024. https://doi.org/10.1016/j.heliyon.2024.e25390
[9] W. Al-Kouz, S. Al-Dahidi, B. Hammad, and M. Al-Abed, “Modeling and analysis framework for investigating the impact of dust and temperature on PV systems’ performance and optimum cleaning frequency”, Applied Sciences, vol. 9, no. 7, 1397, 2019. https://doi.org/10.3390/app9071397
[10] A. Elamim, S. Sarikh, B. Hartiti, A. Benazzouz, S. Elhamaoui, and A. Ghennioui, “Experimental studies of dust accumulation and its effects on the performance of solar PV systems in Mediterranean climate”, Energy Reports, vol. 11, pp. 2346–2359, 2024. https://doi.org/10.1016/j.egyr.2024.01.078
[11] A. A. Babatunde, S. Abbasoglu, and M. Senol, “Analysis of the impact of dust, tilt angle and orientation on performance of PV plants”, Renewable and Sustainable Energy Reviews, vol. 90, pp. 1017–1026, 2018. https://doi.org/10.1016/j.rser.2018.03.102
[12] İ. Kayri and M. T. Bayar, “A new approach to determine the long-term effect of efficiency losses due to different dust types accumulation on PV modules with artificial neural networks”, Journal of Cleaner Production, vol. 434, 140282, 2023. https://doi.org/10.1016/j.jclepro.2023.140282
[13] S. Hossain, A. M. Arika, I. N. Fahim, J. Uddin, A. Ahmed, H. J. Apon, and M. A. Hoque, “Enhancing solar panel performance: A machine learning approach to dust detection and automated water sprinkle-based cleaning strategy”, Solar Energy, vol. 287, 113240, 2025. https://doi.org/10.1016/j.solener.2025.113240
[14] M. Ma, Z. Li, W. Ma, R. Zhang, and X. Zhou, “Comprehensive investigation for power degradation of dust-covered photovoltaic modules based on the overlap model: A case study”, Solar Energy, vol. 291, 113389, 2025. https://doi.org/10.1016/j.solener.2025.113389
[15] M. H. Qais, H. M. Hasanein, and S. Alghuwainem, “Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm”, Applied Energy, vol. 250, pp. 109–117, 2019. https://doi.org/10.1016/j.apenergy.2019.05.013
[16] J. F. Gaviria, G. Narváez, C. Guillen, L. F. Giraldo, and M. Bressan, “Machine learning in photovoltaic systems: A review”, Renewable Energy, vol. 196, pp. 298–318, 2022. https://doi.org/10.1016/j.renene.2022.06.015
[17] R. A. A. Ramadhan, Y. R. J. Heatubun, S. F. Tan, and H.-J. Lee, “Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power”, Renewable Energy, vol. 178, pp. 1006–1019, 2021. https://doi.org/10.1016/j.renene.2021.06.079
[18] H. Long, Z. Zhang, and Y. Su, “Analysis of daily solar power prediction with data-driven approaches”, Applied Energy, vol. 126, pp. 29–37, 2014. https://doi.org/10.1016/j.apenergy.2014.03.084
[19] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression”, Statistics and Computing, vol. 14, pp. 199–222, 2004. https://doi.org/10.1023/B:STCO.0000035301.49549.88
[20] V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd edition. New York, NY: Springer-Verlag, 2000. https://doi.org/10.1007/978-1-4757-3264-1
[21] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system”, in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Francisco, CA, USA, 2016, pp. 785–794. https://doi.org/10.1145/2939672.2939785
[22] M. Jobayer, M. A. H. Shaikat, M. N. Rashid, and M. R. Hasan, “A systematic review on predicting PV system parameters using machine learning”, Heliyon, vol. 9, e16815, 2023. https://doi.org/10.1016/j.heliyon.2023.e16815
[23] S. G. Gouda, Z. Hussein, S. Luo, and Q. Yuan, “Model selection for accurate daily global solar radiation prediction in China”, Journal of Cleaner Production, vol. 221, pp. 132–144, 2019. https://doi.org/10.1016/j.jclepro.2019.02.211
[24] S. T. Asiedu, F. K. A. Nyarko, S. Boahen, F. B. Effah, and B. A. Asaaga, “Machine learning forecasting of solar PV production using single and hybrid models over different time horizons”, Heliyon, vol. 10, no. 7, e28898, 2024. https://doi.org/10.1016/j.heliyon.2024.e28898

