Application of machine learning in predicting quorum sensing inhibition: integration of QSAR modeling, virtual screening, and lead compound development
Tóm tắt: 36
|
PDF: 19
##plugins.themes.academic_pro.article.main##
Author
-
Ta Ngoc LyThe University of Danang - University of Science and Technology, VietnamNguyen Thi HuyenThe University of Danang - University of Science and Technology, Vietnam
Từ khóa:
Tóm tắt
Antibiotic resistance is a critical global health challenge, with Pseudomonas aeruginosa emerging as a formidable pathogen due to its reliance on quorum sensing (QS) for virulence and biofilm formation. This study presents an integrated computational pipeline combining machine learning (ML), molecular docking, and de novo drug design to identify novel QS inhibitors. A dataset of 1,983 compounds was used to train ML models, with the Transformer-CNN-Inception architecture achieving the highest predictive accuracy (90%, AUC = 0.96). Virtual screening against LasR, LuxR, and LuxI revealed 82 high-affinity ligands (binding energy ≤ -10 kcal/mol), outperforming erythromycin (-8.6 kcal/mol). Using NAOMInext, 105 derivatives were generated, with one lead compound exhibiting strong binding (-13.4 kcal/mol) and 92% predicted QS inhibition. ADMET profiling confirmed favorable drug-like properties, including low hepatotoxicity and high gastrointestinal absorption. This work demonstrates a robust framework for accelerating the discovery of anti-virulence agents, offering a promising strategy to combat antibiotic resistance.
Tài liệu tham khảo
-
[1] F. Ferrara, A. Zovi, E. Nava, U. Trama, S. Sorrentino, and A. Vitiello, “Countering antibiotic resistance: a new course of action is needed”, Recenti Prog Med, vol. 114, no. 5, 2023. https://doi: 10.1701/4032.40076.
[2] Z. Pang, R. Raudonis, B. R. Glick, T. J. Lin, and Z. Cheng, “Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies”, Biotechnology Advances, vol. 37, Issue 1, 2019. https://doi: 10.1016/j.biotechadv.2018.11.013.
[3] A. Kariminik, M. Baseri-Salehi, and B. Kheirkhah, “Pseudomonas aeruginosa quorum sensing modulates immune responses: An updated review article”, Immunol Lett, vol. 190, 2017. https://doi: 10.1016/j.imlet.2017.07.002.
[4] H. Al-Momani et al., “The efficacy of biosynthesized silver nanoparticles against Pseudomonas aeruginosa isolates from cystic fibrosis patients”, Sci Rep, vol. 13, no. 1, 2023. doi: 10.1038/s41598-023-35919-6.
[5] B. J. Neves et al., “Automated framework for developing predictive machine learning models for data-driven drug discovery”, J Braz Chem Soc, vol. 32, no. 1, 2021. https://doi: 10.21577/0103-5053.20200160.
[6] X. Lin, X. Li, and X. Lin, “A review on applications of computational methods in drug screening and design”, Molecules, vol. 25, 2020. https://doi: 10.3390/molecules25061375.
[7] I. Sshko et al., “Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information”, J Comput Aided Mol Des, vol. 25, no. 6, 2011. https://doi: 10.1007/s10822-011-9440-2.
[8] J. Eberhardt, D. Santos-Martins, A. F. Tillack, and S. Forli, “AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings”, J Chem Inf Model, vol. 61, no. 8, 2021. doi: 10.1021/acs.jcim.1c00203.
[9] K. Sommer, F. Flachsenberg, and M. Rarey, “NAOMInext – Synthetically feasible fragment growing in a structure-based design context”, Eur J Med Chem, vol. 163, 2019. https://doi: 10.1016/j.ejmech.2018.11.075.
[10] J. J. Irwin et al., “ZINC20 - A Free Ultralarge-Scale Chemical Database for Ligand Discovery”, J Chem Inf Model, vol. 60, no. 12, 2020. https://doi: 10.1021/acs.jcim.0c00675.
[11] A. Daina, O. Michielin, and V. Zoete, “SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules”, Sci Rep, vol. 7, 2017. doi: 10.1038/srep42717.
[12] H. Yang et al., “AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties”, Bioinformatics, vol. 35, no. 6, 2019. https://doi: 10.1093/bioinformatics/bty707.
[13] S. Salentin, S. Schreiber, V. J. Haupt, M. F. Adasme, and M. Schroeder, “PLIP: Fully automated protein-ligand interaction profiler”, Nucleic Acids Res, vol. 43, no. W1, 2015. https://doi: 10.1093/nar/gkv315.
[14] J. Chadha, L. Khullar, P. Gulati, S. Chhibber, and K. Harjai, “Repurposing albendazole as a potent inhibitor of quorum sensing-regulated virulence factors in Pseudomonas aeruginosa: Novel prospects of a classical drug”, Microb Pathog, vol. 186, 2024. https://doi: 10.1016/j.micpath.2023.106468.
[15] S. Rajamanikandan, J. Jeyakanthan, and P. Srinivasan, “Molecular Docking, Molecular Dynamics Simulations, Computational Screening to Design Quorum Sensing Inhibitors Targeting LuxP of Vibrio harveyi and Its Biological Evaluation”, Appl Biochem Biotechnol, vol. 181, no. 1, 2017. https://doi: 10.1007/s12010-016-2207-4.
[16] C. M. M. Koh et al., “A data-driven machine learning approach for discovering potent LasR inhibitors”, Bioengineered, vol. 14, no. 1, 2023. https://doi: 10.1080/21655979.2023.2243416.
[17] A. Vetrivel, J. Ramasamy, S. Natchimuthu, K. Senthil, M. Ramasamy, and R. Murugesan, “Combined machine learning and pharmacophore based virtual screening approaches to screen for antibiofilm inhibitors targeting LasR of Pseudomonas aeruginosa”, J Biomol Struct Dyn, vol. 41, no. 9, 2023. https://doi: 10.1080/07391102.2022.2064331.
[18] M. Mellini et al., “In silico Selection and Experimental Validation of FDA-Approved Drugs as Anti-quorum Sensing Agents”, Front Microbiol, vol. 10, 2019. https://doi: 10.3389/fmicb.2019.02355.
[19] G. Daidone et al., “Synthesis, crystallographic studies and biological evaluation of some 2-substituted 3-indazolyl-4(3H)-quinazolinones and 3-indazolyl-4(3H)-benzotriazinones”, Heterocycles, vol. 43, no. 11, 1996. https://doi: 10.3987/COM-96-7549.
[20] S. A. Patil, R. Patil, and S. A. Patil, “Recent developments in biological activities of indanones”, European Journal of Medicinal Chemistry, vol. 138, pp. 182–198. https://doi.org/10.1016/j.ejmech.2017.06.032

