Validation of spectral imaging database generation for skin diagnosis through monte carlo simulation - real measurement comparison
Tóm tắt: 23
|
PDF: 26
##plugins.themes.academic_pro.article.main##
Author
-
Xuan Dat HoLYDINC Institute of Education and Engineering - Technology, L.Y.D.I.N.C Co. Ltd., Da Nang, VietnamNguyet Ha T. TranLYDINC Institute of Education and Engineering - Technology, L.Y.D.I.N.C Co. Ltd., Da Nang, VietnamThang V. HoangThe University of Danang - University of Science and Technology, VietnamTuan V. PhamLYDINC Institute of Education and Engineering - Technology, L.Y.D.I.N.C Co. Ltd., Da Nang, VietnamAnh Thu T. NguyenThe University of Danang - University of Science and Technology, Vietnam
Từ khóa:
Tóm tắt
Spectral imaging has recently gained attention as a promising noninvasive technique for diagnosing human skin conditions, owing to its safety and noninvasive nature. However, one of the main challenges to advancing the application of this technique is the lack of a comprehensive and reliable database capturing the optical characteristics of different skin tones and conditions. Monte Carlo Simulation on Multi-layer Media (MCML) has proven effective in modeling light-tissue interactions and generating spectral reflectance data for biological tissues, particularly skin. However, the traditional simulation process is time-consuming. This study examines and validates the results of an accelerated MCML simulation using CUDA technology, by comparing its spectral diffuse reflectance outputs with actual measurements from healthy skin across three distinct skin tones within the 900 nm to 1700 nm wavelength range. The high degree of agreement between simulated and measured data supports the feasibility of building a robust MCML-based spectral reflectance database.
Tài liệu tham khảo
-
[1] H. W. Lim et al., “The burden of skin disease in the United States”, Journal of American Academy of Dermatology, vol. 76, no. 5, pp. 958-972.e2, 2017. https://doi.org/10.1016/j.jaad.2016.12.043
[2] D. Seth, K. Cheldize, D. Brown, and E. F. Freeman, “Global Burden of Skin Disease: Inequities and Innovations”, Current Dermatology Reports, vol. 6, no. 3, pp. 204–210, 2017. https://doi.org/10.1007/s13671-017-0192-7
[3] N. Thanh, “Moi nam nguoi dan chi toi 75 ti USD de dieu tri benh ve da”, nld.com.vn, Nov 21, 2020. [Online]. Available: https://nld.com.vn/suc-khoe/moi-nam-nguoi-dan-chi-toi-75-ti-usd-de-dieu-tri-benh-ve-da-20201121161932819.htm [Accessed May 13, 2025].
[4] X. Mai, “Benh viem da tang manh trong nang nong”, tuoitre.vn, Jun 14, 2023. [Online]. Available: https://tuoitre.vn/benh-viem-da-tang-manh-trong-nang-nong-20230614001140849.htm [Accessed May 13, 2025].
[5] D. Yi, W. Yang, S. Z. Li, Encyclopedia of Biometrics, 2nd edition. MA: Springer, 2015.
[6] S. Jowett and T. Ryan, “Skin disease and handicap: An analysis of the impact of skin conditions”, Social Science & Medicine, vol. 20, no. 4, pp. 425–429, 1985. https://doi.org/10.1016/0277-9536(85)90021-8
[7] L. C. Daniel, C. J. Heckman, J. D. Kloss, and S. L. Manne, “Comparing alternative methods of measuring skin color and damage”, Cancer Causes & Control, vol. 20, no. 3, pp. 313–321, 2008. https://doi.org/10.1007/s10552-008-9245-3
[8] G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection”, Journal of Biomedical Optics, vol. 13, no. 1, pp. 14017, 2008. https://doi.org/10.1117/1.2844710
[9] M. Sasikala, S. Mohan, and S. Swarnakumari, “Highlights of Spectroscopic Analysis – A Review”, International Journal of Life Science and Pharma Research, vol. 11, no. 2, pp. 136-145, 2021. https://doi.org/10.22376/ijpbs/lpr.2021.11.2.p136-145
[10] I. Chingovska, A. Anjos, and S. Marcel, Encyclopedia of Biometrics, 0th edition. Heidelberg: Springer, 2020.
[11] S. L. Jacques, “Optical absorption of melanin”, omlc.org. [Online]. Available: https://omlc.org/spectra/melanin/ [Accessed May 13, 2025].
[12] I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions”, Physiological Measurement, vol. 23, no. 4, pp. 741–753, 2002. https://doi.org/10.1088/0967-3334/23/4/312
[13] S. Li, M. Ardabilian, and A. Zine, “Quantitative Analysis of Skin using Diffuse Reflectance for Non-invasive Pigments Detection”, in Proc. 16th Int. Joint Conf. Comput. Vis. & Graph, 2021, pp. 604-614.
[14] A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review”, Journal of Innovative Optical Health Sciences, vol. 4, no. 1, pp. 9–38, 2011. https://doi.org/10.1142/s1793545811001319
[15] G. V. G. Baranoski and A. Krishnaswamy, Light & Skin Interactions: Simulations for Computer Graphics Applications. Morgan Kaufmann, 2010.
[16] L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues”, Computer Methods and Programs in Biomedicine, vol. 47, no. 2, pp. 131–146, 1995. https://doi.org/10.1016/0169-2607(95)01640-f
[17] InnoSpectra Corporation, "NIR-M-R2", inno-spectra.com, 2021. [Online]. Available: https://www.inno-spectra.com/ueditor/php/upload/file/20220928/1664336948607909.pdf [Accessed May 13, 2025].
[18] S. L. Jacques, “Optical properties of biological tissues: a review”, Physics in Medicine and Biology, vol. 58, no. 11, pp. R37–R61, 2013. https://doi.org/10.1088/0031-9155/58/11/r37
[19] E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range", Journal of Biomedical Optics, vol. 11, no. 6, pp. 064026, 2006. https://doi.org/10.1117/1.2398928
[20] S. V. Patwardhan, A. P. Dhawan, and P. A. Relue, "Monte Carlo Simulation of Light-Tissue Interaction: Three-Dimensional Simulation for Trans-Illumination-Based Imaging of Skin Lesions", IEEE Trans. Biomed. Eng., vol. 52, no. 7, pp. 1227-1236, 2005. https://doi.org/10.1109/TBME.2005.847546
[21] K. Martin, The Internet Journal of Vibrational Spectroscopy, 2nd edition. UK: Ventacon, 1999.
[22] A. J. Rodriguez et al., “Skin optical properties in the obese and their relation to body mass index: a review”, Journal of Biomedical Optics, vol. 27, no. 3, pp. 030902, 2022. https://doi.org/10.1117/1.jbo.27.3.030902
[23] G. Nishimura, I. Kida, and M. Tamura, "Characterization of optical parameters with a human forearm at the region from 1.15 to 1.52 microm using diffuse reflectance measurements", Phys. Med. Biol., vol. 51, no. 12, pp. 2997-3011, 2006. https://doi.org/10.1088/0031-9155/51/11/021
[24] H. Jégou et al., “faiss”, github.com. [Online]. Available: https://github.com/facebookresearch/faiss/wiki/Faiss-indexes [Accessed May 13, 2025].
[25] M. Greenacre, International Encyclopedia of Education, 3rd edition. Elsevier, 2010.

