Secrecy performance analysis of multi-hop relay networks with hardware impairments
Abstract: 63
|
PDF: 56
##plugins.themes.academic_pro.article.main##
Author
-
Chu Tiến Dũng, TS. Võ Nguyễn Quốc Bảo*
Keywords:
Non-zero secrecy capacity probability
secrecy outage probability
hardware impairments
rayleigh fading channels
relay networks
Abstract
In this paper, we evaluate secrecy performance of multi-hop relay networks with hardware performance due to phase noise, I/Q imbalance, high power amplifier nonlinearities. The system under consideration consists of one source, one destination and multiple immediate relays. The communication between the source and the destination is helped by relays and overheard by an eavesdropper. Specifically, we derive exact and approximated expressions of the system secrecy outage probability considering two relaying protocols including Randomize-and Forward (RF) and Decode-and-Forward (DF) over Rayleigh fading channels. Finally, the Monte Carlo simulations is performed to verify the analysis expressions and to show the effect of hardware impairment on the system secrecy performance.
References
-
[1] J. N. Laneman, D.N.C. Tse, G. W. Wornell, "Cooperative diversity in wireless networks: Efficient protocols and outage behavior”, IEEE Trans. Inf. Theory, vol. 50, pp. 3062-3080, 2004.
[2] T. T. Duy, H. Y. Kong, "Exact outage probability of cognitive two-way relaying scheme with opportunistic relay selection under interference constraint”, IET Commun., p. 2750–2759, 2012.
[3] V. N. Q. Bao, T. Q. Duong, "Outage analysis of cognitive multihop networks under interference constraints”, IEICE Trans. Commun., p. 1019–1022, 2012.
[4] T. T. Duy, V. N. Q. Bao, "Outage performance of cooperative multihop transmission in cognitive underlay networks”, Proc. ComManTel 2013, pp. 123-127, 2013.
[5] Yang Yang, Honglin Hu, Jing Xu, Guoqiang Mao, "Relay technologies for WiMax and LTE-advanced mobile systems”, IEEE Communications Magazine, pp. 100-105, 2009.
[6] Louie, H. Y. Raymond, Y. Li, B. Vucetic, "Practical physical layer network coding for two-way relay channels: performance analysis and comparison”, IEEE Trans. Wirel. Commun., pp. 764-777, 2010.
[7] Nan Yang, P.L. Yeoh, M. Elkashlan, I.B. Collings, Z. Chen, "Two-Way Relaying With Multi-Antenna Sources: Beamforming and Antenna Selection”, IEEE Trans. Veh. Technol. , pp. 3996-4008, 2012.
[8] C. Shannon, "Communication theory of secrecy systems”, Bell System Technical Journal, p. 656–715, 1949.
[9] Gopala, Praveen Kumar, Lifeng Lai, H. El Gamal, "On the Secrecy Capacity of Fading Channels”, IEEE Trans. Inf. Theory, pp. 4687-4698, 2008.
[10] I. Krikidis, J.S. Thompson, S. Mclaughlin, "Relay selection for secure cooperative networks with jamming”, IEEE Trans. Wirel. Commun., pp. 5003-5011, 2009.
[11] D. H. Ibrahim, E. S. Hassan, S. A. El-Dolil, "A new relay and jammer selection schemes for secure one-way cooperative networks”, Wirel. Pers. Commun., pp. 1-21, 2013.
[12] J. Chen, R. Zhang, L. Song, Z. Han, B. Jiao, "Joint relay and jammer selection for secure decode-and-forward two-way relay communications”, IEEE Trans. Info. For. Sec., pp. 310-320, 2012.
[13] H.A. Suraweera, H.K. Garg, A. Nallanathan , "Performance Analysis of Two Hop Amplify-and-Forward Systems with Interference at the Relay”, IEEE Commun. Lett., pp. 692-694, 2010.
[14] T. T. Duy, V. N. Q. Bao and T.Q. Duong, "Secured communication in cognitive {MIMO} schemes under hardware impairments”, International Conference on Advanced Technologies for Communications (ATC), pp. 109-112, 2014.
[15] N. H. Nhat, V. N. Q. Bao, N. L. Trung, M. Debbah, "Relay selection in two-way relaying networks with the presence of hardware impairment at relay transceiver”, 2014 International Conference on Advanced Technologies for Communications (ATC), pp. 616-620, 2014.
[16] K. Guo, J. Chen, Y. Huang, G. Li, N. Liu, "Outage and capacity analysis between opportunistic and partial relay cooperative network with hardware impairments”, in 2014 International Workshop on High Mobility Wireless Communications (HMWC), 2014, pp. 78-83.
[17] G. Kefeng, J. Chen, G. Li, X. Wang, "Outage analysis of cooperative cellular network with hardware impairments”, in 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), 2014, pp. 1416-1420.
[18] T. T. Duy, T. Q. Duong, D.B. da Costa, V. N. Q. Bao, M. Elkashlan, "Proactive Relay Selection with Joint Impact of Hardware Impairment and Co-channel Interference”, IEEE Trans. Comm., pp. 1-1, 2015.
[19] V. N. Q. Bao and N. L. Trung, "Multihop Decode-and-Forward Relay Networks: Secrecy Analysis and Relay Position Optimization”, Journal on Electronics and Communication, 2012.
[20] J. K. J. L. a. J. P. C. J. Kim, "Physical-Layer Security Against Smart Eavesdroppers: Exploiting Full-Duplex Receivers”, IEEE Access, vol. 6, pp. 32945-32957, 2018.
[21] W. S. J. N. S. A. J. C. K. J. Furqan, "On the Secrecy Performance of SWIPT Receiver Architectures with Multiple Eavesdroppers”, Wireless Commun. and Mobile Comput., vol. 2018, pp. 1-12, 2018.
[22] J. S. S. a. J. P. Vilela, "Uncoordinated Frequency Hopping for Wireless Secrecy Against Non-Degraded Eavesdroppers”, IEEE Trans. Inf. Forensics Security, vol. 13, pp. 143-155, 2018.
[23] T. T. D. a. B. K. T. D. Hieu, "Performance Enhancement for Multihop Harvest-to-Transmit WSNs With Path-Selection Methods in Presence of Eavesdroppers and Hardware Noises”, IEEE Sensors Journal, vol. 18, pp. 5173-5186, 2018.
[24] K. Guo, J. Chen, G. Li, X. Wang, "Outage analysis of cooperative cellular network with hardware impairments”, in 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), 2014, pp. 1416-1420.
[25] J. Barros, M. R. D. Rodrigues, "Secrecy Capacity of Wireless Channels”, 2006 IEEE International Symposium on Inf. Theory, pp. 356-360, 2006.
Read more
Read less
##plugins.themes.academic_pro.article.sidebar##
Published
Sep 30, 2018
Download
How to Cite
Chu Tiến Dũng, TS. Võ Nguyễn Quốc Bảo*. “Secrecy Performance Analysis of Multi-Hop Relay Networks With Hardware Impairments”. The University of Danang - Journal of Science and Technology, vol. 11, no. 132.1, Sept. 2018, pp. 6-11, https://jst-ud.vn/jst-ud/article/view/1615.

