Thickness and corrosion resistance optimization of Micro-ARC oxidation coating on Mg-Al-Li-Zn alloy using Taguchi approach
##plugins.themes.academic_pro.article.main##
Author
-
Do Le Hung Toan, Shuo-Jen Lee
Từ khóa:
Micro-Arc Oxidation
Mg-Al-Li-Zn alloy
Taguchi method
corrosion resistance
Tóm tắt
Micro arc oxidation method has been developed in the field of surface protection of magnesium alloys and considered as a simple, highly effective, commercial and environmentally friendly method in industry. MAO coatings are fabricated on novel Mg-Al-Li-Zn alloy to improve the anti-corrosion performance of surface by using friendly alkaline electrolytes under a high electrical potential. The Taguchi method and optimal analysis are used to identify the effects of the three factors including current density, processing time and electrical frequency on coating’s characteristics. The results have shown that the main factor that affects coating thickness and corrosion resistance of coating is the processing time. The results obtained by optimal conditions are consistent with prediction values of Taguchi analysis. The thickness of the coating can help to improve the long-term corrosion protection of a MAO coating in corrosive environments.
Tài liệu tham khảo
-
[1] W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, M. Ferry, “A high-specific-strength and corrosion-resistant magnesium alloy”, Nat. Mater., 2015, 14, 1229-1235.
[2] M.K. Kulekci, “Magnesium and its alloys applications in automotive industry”, Int. J. Adv. Manuf. Technol., 2008, Vol. 39, 851–865.
[3] Y. Ding, C. Wen, P. Hodgson, Y. Li, “Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys - a review”, J. Mater. Chem. B, 2014, 2, 1912-1933.
[4] R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, E.H. Han, Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank's solution: The influence of microstructural features, Corros. Sci., 2014, 79, 69-82.
[5] Z. Li, Y. Yuan, P. Sun, and X. Jing, “Ceramic Coatings of LA141 Alloy Formed by Plasma Electrolytic Oxidation for Corrosion Protection”, Appl. Mater. Interfaces, 2011, 3, 3682–3690,.
[6] W.R. Zhou, Y.F. Zheng, M.A. Leeflang, J. Zhou, “Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg–Li–(Al)–(RE) alloys for future cardiovascular stent application”, Acta Biomaterialia, 2013, 9, 8488-8498.
[7] J.J. Zhang, C. Wu, “Corrosion and Protection of Magnesium Alloys - A Review of the Patent Literature”, Corros. Sci., 2010, 2, 55-68.
[8] J.E. Gray, B. Luan, “Protective coatings on magnesium and its alloys - a critical review”, J. Alloy. Compd., 2002, 336, 88–113.
[9] A. Lugovskoy, M. Zinigrad, “Plasma Electrolytic Oxidation of Valve Metals”, In: Materials Science - Advanced Topics, Ed. YizhakMastai, InTech, 2013.
[10] T.S.N. Sankara Narayanan, Il Song Park, Min Ho Lee. “Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants - Prospects and challenges”, Prog. Mater. Sci., 2014, 60, 1-71.
[11] L.H. Li, T.S.N. Sankara Narayanan, Y.K. Kim, J.Y. Kang, I.S. Park, T.S. Baea and M.H. Lee, “Characterization and corrosion resistance of pure Mg modified by micro-arc oxidation using phosphate electrolyte with/without NaOH”, Surf. Interface Anal., 2014, 46, 7-15.
[12] X. Yongjun, “Effect of additives on structure and corrosion resistance of ceramic coatings on Mg–Li alloy by micro-arc oxidation”, Curr. Appl. Phys., 2010, 10, 719-723, 2010.
[13] Z.J. Li, Y. Yuan and X.Y. Jing, “Comparison of plasma electrolytic oxidation coatings on Mg–Li alloy formed in molybdate silicate and aluminate silicate composite electrolytes”, Mater. Corros., 2014, 65, 493-501.
[14] X. Lu, C. Blawert, M. Mohedano, N. Scharnagl, M.L. Zheludkevich, K.U. Kainer, “Influence of electrical parameters on particle uptake during plasma electrolytic oxidation processing of AM50 Mg alloy”, Surf. Coatings Technol., 2016, 289, 179–185.
[15] A. Nominé, J. Martin, G. Henrion, T. Belmonte, “Effect of cathodic micro-discharges on oxide growth during plasma electrolytic oxidation (PEO)”, Surf. Coatings Technol., 2015, 269, 131-137.
[16] R.O. Hussein, X. Nie, D.O. Northwood, A. Yerokhin and A. Matthews, “Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process”, J. Phys. D Appl. Phys., 2010, 43, 105203.
[17] D. Jun, L. Jun, H. Li-tian, H. Jing-cheng, X. Qun-ji, “Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate KOH electrolyte”, T. Nonferr. Metal. Soc., 2007, 17, 244-249.
[18] L. Song, Y. Kou, Y. Song, D. Shan, G. Zhu and E.H. Han, “Fabrication and characterization of micro-arc oxidation (MAO) coatings on Mg-Li alloy in alkaline polyphosphate electrolytes without and with the addition of K2TiF6”, Mater. Corros., 2011, 62, 1124-1132.
[19] Y. Yue, W. Hua, “Effect of current density on corrosion resistance of micro-arc oxide coating on magnesium alloy”, T. Nonferr. Metal. Soc., 2010, 20, 688-692, 2010.
[20] P. Bala Srinivasan, J. Liang, C. Blawert, M. Störmer, W. Dietzel, “Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy”, Appl. Surf. Sci., 2009, 255, 4212-4218,.
[21] H.M. Wang, Z.H. Chen, L.L. Li, “Corrosion resistance and microstructure characteristics of plasma electrolytic oxidation coatings formed on AZ31 magnesium alloy”, Surf. Eng., 2010, 26, 385-391.
[22] L.C. Zhao, C.X. Cui, Q.Z. Wang, S.J. Bu, “Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications”, Corros Sci., 2010, 52, 2228-2234.
[23] G.H. Lv, H. Chen, W.C. Gu, L. Li, E.W. Niu, X.H. Zhang, S.Z. Yang, “Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology”, J. Mater. Process. Technol., 2008, 208, 9-13.
[24] P. Su, X. Wu, Z. Jiang, Y. Guo, “Effects of Working Frequency on the Structure and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings Formed on a ZK60 Mg Alloy”, Int. J. Appl. Ceram. Technol., 2009, 8, 112-119.
[25] S.J. Lee, L.H.T Do, “Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy”, Surf. Coat. Technol., 2016, 307, 781-789.
[26] X.J Cui, C.H. Liu, R.S. Yang, M.T. Li, X.Z. Lin, “Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism”, Surf. Coat. Technol., 2015, 269, 228-237.
[27] S. Durdu, M. Usta, “Characterization and mechanical properties of coatings on magnesium by micro arc oxidation”, Appl. Surf. Sci., 2012, 261, 774-782.
[28] Y.K. Lee, K. Lee, T. Jung, “Study on microarc oxidation of AZ31B magnesium alloy in alkaline metal silicate solution”, Electrochem. Commun., 2008, 10, 1716-1719, 2008.
[29] W. Mu, Y. Han, “Characterization and properties of the MgF2/ZrO2 composite coatings on magnesium prepared by micro-arc oxidation”, Surf. Coat. Technol., 2008, 202, 4278-4284.
[30] G.H. Lv, H. Chen, l. Li, E.W. Niu, H. Pang, B. Zou, S.Z. Yang, “Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy”, Curr. Appl. Phys., 2009, 9, 126-130.
Xem thêm
Ẩn bớt
##plugins.themes.academic_pro.article.sidebar##
Đã Xuất bản
Jun 30, 2020
Download
Cách trích dẫn
Do Le Hung Toan, Shuo-Jen Lee. “Thickness and Corrosion Resistance Optimization of Micro-ARC Oxidation Coating on Mg-Al-Li-Zn Alloy Using Taguchi Approach”. Tạp Chí Khoa học Và Công nghệ - Đại học Đà Nẵng, vol 18, số p.h 6, Tháng Sáu 2020, tr 62-66, doi:10.31130/jst-ud2020-210E.