Ảnh hưởng của môi trường nuôi đến sinh trưởng và tích lũy carotenoid trong pha sinh trưởng ở vi tảo Tetradesmus obliquus
##plugins.themes.academic_pro.article.main##
Author
-
Phan Thị Diễm My, Phan Nhật Trường, Võ Văn Minh, Trịnh Đăng Mậu, Trần Nguyễn Quỳnh Anh
Từ khóa:
Vi tảo
Tetradesmus obliquus
carotenoid
nitơ
photpho
Tóm tắt
Nghiên cứu này khảo sát ảnh hưởng của nồng độ các chất dinh dưỡng nitơ (N), photpho (P) và muối NaCl đến khả năng sinh trưởng và tích lũy carotenoid của vi tảo Tetradesmus obliquus được phân lập từ các thủy vực nước ngọt tại Đà Nẵng. Kết quả cho thấy T. obliquus sinh trưởng tốt nhất trong môi trường BG11 với nồng độ N 120 mgN.L-1, nồng độ P 5,43 mgP.L-1 và môi trường BG11 có nồng độ N 260 mgN.L-1, P 12,21 mgP.L-1 với tốc độ sinh trưởng tương ứng đạt 0,298 ± 0,01 ngày-1 và 0,252 ± 0,20 ngày-1. Đồng thời, ở các điều kiện này, sự tích lũy carotenoid tổng cũng đạt tốt nhất với năng suất trung bình tương ứng đạt 0,80 ± 0,13 % và 0,49 ± 0.18 % sinh khối khô. Bên cạnh đó, muối NaCl ở nồng độ rất nhỏ (0,01 - 0,2 M) được xác định gây ra tác động tiêu cực đến T. obliquus trong giai đoạn sinh trưởng, và nồng độ NaCl 0,6 M ức chế hoàn toàn sự sinh trưởng của vi tảo.
Tài liệu tham khảo
-
[1] Otto Pulz and Wolfgang Gross, “Valuable products from biotechnology of microalgae”, Appl. Microbiol. Biotechnol., vol. 65, no. 6, 2004, 635–648.
[2] P. Přibyl, P. Jan, C. Vladislav, and K. Petr, “The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp.”, Algal Res., vol. 16, 2016, 69–75.
[3] K. Skjånes, C. Rebours, and P. Lindblad, “Critical Reviews in Biotechnology Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process”, Crit. Rev. Biotechnol., vol. 33, no. 2, 2013, 172–215.
[4] L. H. Skibsted, “Carotenoids in antioxidant networks. Colorants or radical scavengers”, Journal of Agricultural and Food Chemistry, vol. 60, no. 10, 2012, 2409–2417.
[5] P. Bhosale, “Environmental and cultural stimulants in the production of carotenoids from microorganisms”, Applied Microbiology and Biotechnology, vol. 63, no. 4, 2004, 351–361.
[6] Y. Lemoine and B. Schoefs, “Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress”, Photosynthesis Research, vol. 106, no. 1–2. Kluwer Academic Publishers, 2010, 155–177.
[7] S. Boussiba, W. Bing, J. P. Yuan, A. Zarka, and F. Chen, “Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses”, Biotechnol. Lett., vol. 21, no. 7, 1999, 601–604.
[8] C. Hagen, K. Grünewald, M. Xyländer, and E. Rothe, “Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of Haematococcus pluvialis”, J. Appl. Phycol., vol. 13, no. 1, 2001, 79–87.
[9] S. Qin, G.-X. Liu, and Z.-Y. Hu, “The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae)”, Process Biochem., vol. 43, no. 8, 2008, 795–802.
[10] A. Dharma, W. Sekatresna, R. Zein, Z. Chaidir, and N. Nasir, “Chlorophyll and Total Carotenoid Contents in Microalgae Isolated from Local Industry Effluent in West Sumatera, Indonesia,” Der Pharma Chem., vol. 9, no. 18, 2017, 9–11.
[11] D. P. Sartory, D. P. Sartoryl, and J. U. Grobbelaas, “Extraction of Chlorophyll a From Freshwater Phytoplankton for Spectrophotometric Analysis,” Hydrobiologia, vol. 114, no. 3, 2015, 177–187.
[12] H. Lichthentaler, “Chlorophyll and carotenoids-pigments of photosynthetic biomembranes,-In: Colowick, SP., Kaplan, NO (ed): , Vol, 148”, in Methods in Enzymology, vol. 148, S. Colowick and N. Kaplan, Eds. 1987, 350–382.
[13] R Core Team, “R: A language and environment for statistical computing.” R Foundation for Statistical Computing, Vienna, Austria, 2014, [Online]. Available: http://www.r-project.org/.
[14] D. Simionato et al., “The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes De Novo Biosynthesis of Triacylglycerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus”, Eukaryot. Cell, vol. 5, 2013, 665–676.
[15] J. Liu, C. Yuan, G. Hu, and F. Li, “Effects of Light Intensity on the Growth and Lipid Accumulation of Microalga Scenedesmus sp. 11-1 Under Nitrogen Limitation”, Appl. Biochem. Biotechnol., vol. 166, no. 8, 2012, 2127–2137.
[16] S. Nigam and M. Prakash, “Effect of Nitrogen on Growth and Lipid Content of Chlorella pyrenoidosa Polymer degradation by microbial consortium isolated from landfill site of New Delhi View project Microalgae biomass production for biodiesel and other value added compounds View project”, Artic. Am. J. Biochem. Biotechnol., 2011.
[17] A. Richmond, Handbook of Microalgal Culture: Biotechnology and Applied Phycology. John Wiley & Sons, 2008.
[18] Y. Li, M. Horsman, B. Wang, N. Wu, and C. Q. Lan, “Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans”, Appl. Microbiol. Biotechnol., vol. 81, no. 4, 2008, 629–636.
[19] J. Lai, Zhiming Yu, Xiuxian Song, Xihua Cao, and Xiaotian Han, “"Responses of the growth and biochemical composition of Prorocentrum donghaiense to different nitrogen and phosphorus concentrations”, J. Exp. Mar. Bio. Ecol., vol. 405, no. 1, 2011, 6–17.
[20] N. Touzet, J. Franco, and R. Raine, “Influence of inorganic nutrition on growth and PSP toxin production of Alexandrium minutum (Dinophyceae) from Cork Harbour, Ireland”, Toxicon, vol. 50, no. 1, 2007, 106–119.
[21] I. Pancha et al., “Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077”, Bioresour. Technol., vol. 156, 2014, 146–154.
[22] L. Xin, H. Hong-Ying, G. Ke, and S. Ying-Xue, “Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp.”, Bioresour. Technol., vol. 101, no. 14, 2010, 5494–5500.
[23] KG Raghothama, “Phosphate transport and signaling”, Curr. Opin. Plant Biol., vol. 3, no. 3, 2000, 182–187.
[24] Y. Duan, X. Guo, J. Yang, M. Zhang, and Y. Li, “Nutrients recycle and the growth of Scenedesmus obliquus in synthetic wastewater under different sodium carbonate concentrations”, R. Soc. Open Sci., vol. 7, no. 1, 2020, 191–214.
[25] Hamouda Ragaa Abd Elfatah and Ghada Wagih Abou-El-Souod, “Influence of Various Concentrations of Phosphorus on the Antibacterial, Antioxidant and Bioactive Components of Green Microalgae Scenedesmus obiliquus”, Int. J. Pharmacol., vol. 14, no. 1, 2018, 99–107.
[26] S. Ho, C. Chen, J. C.-B, “Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N”, Bioresource technology, vol. 113, 2012, 244-252.
[27] D. Tang, W. Han, P. Li, X. Miao, and J. Zhong, “CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels”, Bioresour. Technol., vol. 102, no. 3, 2011, 3071–3076.
[28] L. Rodolfi et al., “Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor”, Biotechnol. Bioeng., vol. 102, no. 1, 2009, 100–112.
[29] Z. Arbib, J. Ruiz, P. Álvarez-Díaz, C. Garrido-Pérez, J. Barragan, and J. A. Perales, “Photobiotreatment: influence of nitrogen and phosphorus ratio in wastewater on growth kinetics of Scenedesmus obliquus”, Int. J. Phytoremediation, vol. 15, no. 8, 2013, 774–788.
[30] T. Mohamed El-Katony and M. Faiz El-Adl, “Salt response of the freshwater microalga Scenedesmus obliquus (Turp.) Kutz is modulated by the algal growth phase”, J. Oceanol. Limnol., vol. 38, no. 3, 2020, 802–815.
[31] J. Cheng et al., “The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002”, Sci. Total Environ., vol. 633, 2018, 593–599.
[32] M. Guilian, X. Xu, and Z. Xu, “Advances in physiological and biochemical research of salt tolerance in plant”, Chinese J. Eco-Agriculture, vol. 12, no. 1, 2004, 43–46.
[33] K. Asada, “The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons”, Annu. Rev. Plant Biol., vol. 50, 1999, 601–639.
[34] M. García-González et al., “Production of Dunaliella salina biomass rich in 9-cis-??-carotene and lutein in a closed tubular photobioreactor Production of Dunaliella salina biomass rich in 9-cis-carotene and lutein in a closed tubular photobioreactor”, Artic. J. Biotechnol., vol. 115, 2005, 81–90.
[35] A. M. Blanco, J. Moreno, J. A. Del Campo, J. Rivas, and M. G. Guerrero, “Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds”, Appl. Microbiol. Biotechnol., 2007.
[36] M. C. Damiani et al., “Triacylglycerol content, productivity and fatty acid profile in Scenedesmus acutus PVUW12”, J. Appl. Phycol., vol. 26, no. 3, 2014, 1423–1430.
[37] P. Přibyl, V. Cepák, P. Kaštánek, and V. Zachleder, “Elevated production of carotenoids by a new isolate of Scenedesmus sp.”, Algal Res., vol. 11, 2015, 22–27.
[38] J. Sánchez, J. Fernández, F. Acién, A. Rueda, J. Pérez-Parra, and E. Molina, “Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis”, Process Biochem., vol. 43, no. 4, 2008, 398–405.
[39] F. Perreault et al., “Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment”, Artic. J. Appl. Phycol., vol. 24, no. 1, 2011, 117–124.
[40] N. Hanagata and Z. Dubinsky, “Secondary carotenoid accumulation in Scenedesmus komarekii (Chlorophyceae, Chlorophyta)”, J. Phycol., vol. 35, no. 5, 1999, 960–966.
[41] J. F. Sánchez, J. M. Fernández-Sevilla, F. G. Acién, M. C. Cerón, J. Pérez-Parra, and E. Molina-Grima, “Biomass and lutein productivity of Scenedesmus almeriensis: Influence of irradiance, dilution rate and temperature”, Appl. Microbiol. Biotechnol., vol. 79, no. 5, 2008, 719–729.
Xem thêm
Ẩn bớt
##plugins.themes.academic_pro.article.sidebar##
Đã Xuất bản
Sep 30, 2020
Download
Cách trích dẫn
Phan Thi Diem My, Phan Nhat Truong, Vo Van Minh, Trinh Dang Mau, Tran Nguyen Quynh Anh. “Ảnh hưởng của môi trường nuôi đến Sinh trưởng Và tích lũy Carotenoid Trong Pha Sinh trưởng ở Vi tảo Tetradesmus Obliquus”. Tạp Chí Khoa học Và Công nghệ - Đại học Đà Nẵng, vol 18, số p.h 9, Tháng Chín 2020, tr 46-51, https://jst-ud.vn/jst-ud/article/view/3340.