Những tiềm năng và thách thức của phương tiện giao thông sử dụng pin nhiên liệu hydro
##plugins.themes.academic_pro.article.main##
Author
-
Ngô Phi Mạnh, Dương Đình Nghĩa, Bùi Viết Cường
Từ khóa:
Tóm tắt
Hiện nay, các vấn đề nghiêm trọng về môi trường như ô nhiễm không khí, biến đổi khí hậu do phát thải từ các phương tiện giao thông sử dụng động cơ đốt trong; Cùng với sự cạn kiệt của nguồn dầu mỏ và khí đốt đang thúc đẩy con nguời phải nhanh chóng tìm ra các phương tiện giao thông mới. Và pin nhiên hiệu hydro được đánh giá là một trong những thay thế đầy tiềm năng nhằm cung cấp nguồn động lực với hiệu suất chuyển hóa năng lượng cao, thân thiện môi trường và đảm bảo tính phát triển bền vững cho các phương tiện giao thông trong tương lai. Để hiện thực được điều này, công nghệ pin nhiên liệu cần vượt qua nhiều thách thức về mặt kinh tế lẫn kỹ thuật. Trong bài báo này, chúng tôi sẽ tập trung phân tích 2 trở ngại chính làm chậm quá trình thương mại hóa của các phương tiện giao thông chạy pin nhiên liệu hydro, đó là giá thành sản xuất và độ bền của cụm pin nhiên liệu. Đồng thời, các giải pháp khắc phục 2 trở ngại trên cũng được tổng hợp.
Tài liệu tham khảo
-
[1] https://www.britannica.com/technology/energy-conversion/
[2] Internal-combustion-engines
[3] World Economic Forum; 2016. https://www.weforum.org/agenda/ 2016/04/thenumber-of-cars-worldwide-is-set-to-double-by-2040
[4] BP Energy outlook; 2017. https://www.bp.com/content/dam/bp/pdf/ energyeconomics/energy-outlook-2017/bp-energy-outlook-2017.pdf
[5] U.S. Energy Information Administration (EIA). International energy outlook; 2016. https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
[6] IPCC. Chapter 8: transport IPCC WGIII fifth assessment report. https://www.ipcc. ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter8.pdf]
[7] W. R. Grove, “On Voltaic Series and Combination of gases by Platinum”, Philosohical Magazine, series 3 Vol. 14, pp. 127–130, 1839.
[8] World energy council, Fuel cell efficiency. http://worldenergy.org, 2010.
[9] Matthew M. Mench, Hydrogen fuel cell engines, Nhà XB John Wiley & Sons, 2008 chương 6, trang 285.
[10] W. Sung, Y. Song, K. Yu, and T. Lim, “Recent Advances in the Development of Hyundai-Kia’s Fuel Cell Electric Vehicles”, SAE Int. J. Engines 3.1 (2010): 768-772.
[11] Wonjae Choi et al. “Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea”, Applied Energy 265 (2020), 114754.
[12] US Department of Energy (Well-to-Wheels Greenhouse Gas Emissions and Petroleum Use for Mid-Size Light-Duty Vehicles. US Department of Energy, October 2010).
[13] E. Glueckauf, G. P. Kitt, “the hydrogen content of atmospheric air at ground level”, Royal Meteorological Society Volume 83, Issue 358, October 1957, Pages 522-528.
[14] Eiji Ohira, Japan Policy and Activityon Hydrogen Energy, New Energy and Industrial Technology Development Organization (NEDO), 4 March, 2019
[15] Society of Automotive Engineers (SAE), 2016. Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles (Standard J2601_201612). SAE International.
[16] Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea, Applied Energy, 265 (2020) 114754.
[17] Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan, Energy Policy 142 (2020) 111533.
[18] https://electrek.co/2017/01/30/electric-vehicle-battery-cost-dropped-80-6-years-227kwh-tesla-190kwh/
[19] IEA Energy Technology Essentials; 2007. Hydrogen production and distribution. https://www.iea.org/publications/freepublications/publication/essentials5.pdf
[20] Wikipedia.Toyota Mirai. https://en.wikipedia.org/wiki/Toyota_Mirai.
[21] Honda, 10 March 2016: https://global.honda/newsroom/news/ 2016/4160310eng.html
[22] DOE Technical Targets for Fuel Cell Systems and Stacks for Transportation Applications, https://www.energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-and-stacks-transportation-applications
[23] Hongqiang Yang et al. “Performance of straight-run naphtha single- and two-stage combustion modes from low to high load”, International Journal of Engine Research 14(5) 469–478.
[24] https://www.toyota.com/mirai/fullspecs.html
[25] Jason Marcinkoski et al., 2015, Fuel Cell System Cost-2015, DOE Hydrogen and Fuel Cells Record Program. U.S. Department of Energy <https://www.hydrogen.energy.gov/pdfs/15015_fuel_cell_system_cost_2015.pdf>
[26] Adria Wilson, Gregory Kleen, and Dimitrios Papageorgopoulos, 2017, Fuel Cell System Cost-2017, DOE Hydrogen and Fuel Cells Record Program. U.S. Department of Energy <https://www.hydrogen.energy.gov/pdfs/17007_fuel_cell_system_cost_2017.pdf>
[27] Litster, McLean, “PEM fuel cell electrodes”, Journal of Power Sources 130, 61–76)
[28] H. A. Gasteiger, J. E. Panels, and S. G. Yan, J. Power Sources, 127, 162 (2004).
[29] J. Marquis, M.O. Coppens, “Achieving ultra-high platinum utilization via optimization of PEM fuel cell cathode catalyst layer microstructure”, Chemical Engineering Science 102 (2013)151–162.
[30] Josef C. Meier, Carolina Galeano, et al. “Design criteria for stable Pt/C fuel cell catalysts”, Beilstein J. Nanotechnol. 2014, 5, 44–67.
[31] Allen Hermann et al. “Bipolar plates for PEM fuel cells: A review”, International Journal of Hydrogen Energy 30 (2005) 1297–1302.
[32] J. R. Mawdsley, J. D. Carter, X. Wang et al., “Composite coated aluminum bipolar plates for PEM fuel cells”, Journal of Power Sources, vol. 231, pp. 106–112, 2013.
[33] El-Enim SAA, Abdel-Salam OE, El-Abd H, Amin AM, “New electroplated aluminum bipolar plate for PEM fuel cell”, J Power Sources 2008;177(1):131–6.
[34] Tsuchiya H, Kobayashi O, “Mass production cost of PEM fuel cell by learning curve”, Int J Hydrogen Energy 2004;29(10): 985–90]
[35] Samu A, Pertti K, Jari I, Pasi K, “Bipolar plate, method for producing bipolar plate and PEM fuel cell”, United State Patent Appl 20090142645; 2009.
[36] U. Drive Fuel cell technical team roadmap US Drive Partnership, New York (2017), pp. 1-34.
[37] Placca L, Kouta R, “Fault tree analysis for PEM fuel cell degradation process modelling”, International Journal of Hydrogen Energy, (2011), 12393-12405, 36(19).
[38] M. Zaton, J. Roziere and D. J. Jones, “Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: a review”, Sustainable Energy Fuels, 2017, 1, 409.
[39] D. Kurniawan, H. Arai, S. Morita and K. Kitagawa, Microchem. J., 2013, 106, 384–388. 116 T.
[40] Tokumasu, I. Ogawa, M. Koyama, T. Ishimoto and A. Miyamoto, J. Electrochem. Soc., 2011, 158, B175–B179.
[41] T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi, A. Tasaka, Y. Iriyama T. Abe, Z. Ogumi, J. Power Sources, in press..
[42] M.R. Tarasevich et al. “Comprehensive Treatise of Electrochemistry”, vol. 7, Plenum Press, New York, 1983, p.301.
[43] Minoru Inaba, Taro Kinumoto, et al. “Gas crossover and membrane degradation in polymer electrolyte fuel cells”, Electrochimica Acta 51 (2006) 5746–5753.
[44] Gruer, A.; Régis, A.; Schmatko, T. & Colomban –Vibrational Spectrosc. 26, 215 (2001).
[45] Rangachary Mukundan, Andrew M. Baker, et al. Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive. Journal of The Electrochemical Society, 165 (6) F3085-F3093 (2018).
[46] F.D. Coms et al. “Mitigation of Perfluorosulfonic Acid Membrane Chemical Degradation Using Cerium and Manganese Ions”, ECS Trans. 16 (2) (2008) 1735–1747.
[47] G. Czapski et al. “The Kinetics of the Oxidation of Hydrogen Peroxide by Cerium(IV)”, J. Phys. Chem. 67 (1963) 201–203.
[48] J. T. Hinatsu, M. Mizuhata, and H. Takenaka, J Electrochem Soc, 141, 1493 (1994).
[49] Alavijeh A, Khorasany R, Nunn Z, et al. “Microstructural and Mechanical Characterization of Catalyst Coated Membranes Subjected to In-Situ Hygrothermal Fatigue”, Journal of The Electrochemical Society, (2015), F1461-F1469, 162(14).
[50] US Department of Energy. DOE CELL component accelerated stress test protocols for pem fuel cells, 3 2007. https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf]
[51] Lai Y, Mittelsteadt C, Gittleman C, et al. “Viscoelastic stress analysis of constrained proton exchange membranes under humidity cycling”, Journal of Fuel Cell Science and Technology, (2009), 0210021-02100213, 6(2).
[52] S. Vengatesan, Michael W. Fowlera, et.al. “Diagnosis of MEA degradation under accelerated relative humidity cycling”, Journal of Power Sources 196 (2011) 5045–5052.
[53] Y. Tang, A. Kusoglu, A.M. Karlsson, M.H. Santare, S. Cleghorn, W.B. Johnson, J. Power Sources 175 (2008) 817-825.