Tối ưu hóa quá trình thủy phân protein nội tạng hải sâm bằng papain
##plugins.themes.academic_pro.article.main##
Author
-
Tạ Ngọc Ly, Đặng Minh Nhật
Từ khóa:
Tóm tắt
Nội tạng hải sâm, chiếm khoảng 40÷45% trọng lượng toàn bộ hải sâm, là phế phẩm chính của nghành chế biến hải sâm. Phế phẩm này chứa protein, chất béo và khoáng chất phong phú, tuy vậy chưa có nghiên cứu để chế biến thành các sản phẩm có ích. Nghiên cứu này nhằm tối ưu hóa quá trình thủy phân protein nội tạng hải sâm bằng Papain. Quá trình thủy phân được tối ưu hóa theo phương pháp bề mặt đáp ứng với 3 nhân tố pH (4÷8), nhiệt độ (30÷90°C) và nồng độ Papain (0,001÷0,1g/ml), đồng thời mức độ thủy phân protein theo thời gian cũng được xác định. Kết quả cho thấy hiệu suất thủy phân thu được cao nhất (47,8%) sau 3h thủy phân bằng papain nồng độ 0,061 g/ml ở nhiệt độ 62oC và pH= 8. Kết quả này là cơ sở để xây dựng qui trình công nghệ thủy phân nội tạng hải sâm bằng papain và cho các nghiên cứu trong tương lai về các ứng dụng tiềm năng của dịch thủy phân protein nội tạng hải sâm làm thực phẩm chức năng hoặc phân bón giàu đạm.
Tài liệu tham khảo
-
[1] S. Bordbar, F. Anwar, N. Saari. High-value components and bioactives from sea cucumbers for functional foods - A review. Marine Drugs (2011). https://doi.org/10.3390/md9101761.
[2] R. Pangestuti, Z. Arifin. Medicinal and health benefit effects of functional sea cucumbers. Journal of Traditional and Complementary Medicine (2018). https://doi.org/10.1016/j.jtcme.2017.06.007.
[3] D.L. Aminin, E.S. Menchinskaya, E.A. Pislyagin, A.S. Silchenko, S.A. Avilov, V.I. Kalinin. Sea Cucumber Triterpene Glycosides as Anticancer Agents. in: Stud. Nat. Prod. Chem., 2016. https://doi.org/10.1016/B978-0-444-63601-0.00002-8.
[4] Q. Zhao, Z.D. Liu, Y. Xue, J.F. Wang, H. Li, Q.J. Tang, Y.M. Wang, P. Dong, C.H. Xue. Ds-echinoside A, a new triterpene glycoside derived from sea cucumber, exhibits antimetastatic activity via the inhibition of NF-κB-dependent MMP-9 and VEGF expressions. Journal of Zhejiang University: Science B (2011). https://doi.org/10.1631/jzus.B1000217.
[5] Q. Zhao, C.H. Xue, Y.C. Yang, P. Dong, Y.M. Wang, J.F. Wang. Echinoside A, A triterpene glycoside derived from sea cucumber, on anti-tumer metastasis via regulation of MMP-9 signal pathway. Huadong Ligong Daxue Xuebao/Journal of East China University of Science and Technology (2011).
[6] Y. Chang, C. Xue, Q. Tang, D. Li, X. Wu, J. Wang. Isolation and characterization of a sea cucumber fucoidan-utilizing marine bacterium. Letters in Applied Microbiology (2010). https://doi.org/10.1111/j.1472-765X.2009.02792.x.
[7] L. Yu, L. Ge, C. Xue, Y. Chang, C. Zhang, X. Xu, Y. Wang. Structural study of fucoidan from sea cucumber acaudina molpadioides: A fucoidan containing novel tetrafucose repeating unit. Food Chemistry (2014). https://doi.org/10.1016/j.foodchem.2013.06.079.
[8] S.L. Zhang, Ling-Li, Y.H. Yi, Z.R. Zou, Peng-Sun. Philinopgenin A, B, and C, three new triterpenoid aglycones from the sea cucumber pentacta quadrangulasis. Marine Drugs (2004). https://doi.org/10.3390/md204185.
[9] S.Y. Zhang, Y.H. Yi, H.F. Tang. Bioactive triterpene glycosides from the sea cucumber Holothuria fuscocinerea. Journal of Natural Products (2006). https://doi.org/10.1021/np060106t.
[10] T. Sugawara, N. Zaima, A. Yamamoto, S. Sakai, R. Noguchi, T. Hirata. Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells. Bioscience, Biotechnology and Biochemistry (2006). https://doi.org/10.1271/bbb.60318.
[11] J. Xu, S. Guo, L. Du, Y.M. Wang, T. Sugawara, T. Hirata, C.H. Xue. Isolation of cytotoxic glucoerebrosides and long-chain bases from sea cucumber Cucumaria frondosa using high speed counter-current chromatography. Journal of Oleo Science (2013). https://doi.org/10.5650/jos.62.133.
[12] C.G. Panagos, D.S. Thomson, C. Moss, A.D. Hughes, M.S. Kelly, Y. Liu, W. Chai, R. Venkatasamy, D. Spina, C.P. Page, J. Hogwood, R.J. Woods, B. Mulloy, C.D. Bavington, D. Uhrín. Fucosylated chondroitin sulfates from the body wall of the sea cucumber Holothuria forskali: Conformation, selectin binding, and biological activity. Journal of Biological Chemistry (2014). https://doi.org/10.1074/jbc.M114.572297.
[13] S.C. Anderson, J.M. Flemming, R. Watson, H.K. Lotze. Serial exploitation of global sea cucumber fisheries. Fish and Fisheries (2011). https://doi.org/10.1111/j.1467-2979.2010.00397.x.
[14] F. Guerard, L. Guimas, A. Binet. Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis B: Enzymatic (2002). https://doi.org/10.1016/S1381-1177(02)00203-5.
[15] M. Muzaifa, N. Safriani, F. Zakaria. Production of protein hydrolysates from fish by-product prepared by enzymatic hydrolysis. AACL Bioflux (2012).
[16] S. Saidi, A. Deratani, M.P. Belleville, R. Ben Amar. Production and fractionation of tuna by-product protein hydrolysate by ultrafiltration and nanofiltration: Impact on interesting peptides fractions and nutritional properties. Food Research International (2014). https://doi.org/10.1016/j.foodres.2014.04.026.
[17] G.A. Gbogouri, M. Linder, J. Fanni, M. Parmentier. Analysis of lipids extracted from salmon (Salmo salar) heads by commercial proteolytic enzymes. European Journal of Lipid Science and Technology (2006). https://doi.org/10.1002/ejlt.200600081.
[18] N. Souissi, A. Bougatef, Y. Triki-Ellouz, M. Nasri. Biochemical and functional properties of sardinella (Sardinetta aurita) by-product hydrolysates. Food Technology and Biotechnology (2007).
[19] R. Šližyte, R. Mozuraityte, O. Martínez-Alvarez, E. Falch, M. Fouchereau-Peron, T. Rustad. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochemistry (2009). https://doi.org/10.1016/j.procbio.2009.02.010.
[20] Herpandi, N. Huda, A. Rosma, W.A. Wan Nadiah. The Tuna Fishing Industry: A New Outlook on Fish Protein Hydrolysates. Comprehensive Reviews in Food Science and Food Safety (2011). https://doi.org/10.1111/j.1541-4337.2011.00155.x.
[21] J. Roslan, S.M. Mustapa Kamal, K.F. Md. Yunos, N. Abdullah. Optimization of enzymatic hydrolysis of tilapia (Oreochromis niloticus) byproduct using response surface methodology. International Food Research Journal (2015).
[22] N. Wisuthiphaet, S. Kongruang, C. Chamcheun. Production of Fish Protein Hydrolysates by Acid and Enzymatic Hydrolysis. Journal of Medical and Bioengineering (2015). https://doi.org/10.12720/jomb.4.6.466-470.
[23] Z. Grzonka, F. Kasprzykowski, W. Wiczk. Cysteine proteases. in: Ind. Enzym. Struct. Funct. Appl., 2007. https://doi.org/10.1007/1-4020-5377-0_11.
[24] A.C. Storer, R. Ménard. Papain. in: Handb. Proteolytic Enzym., 2013. https://doi.org/10.1016/B978-0-12-382219-2.00418-X.
[25] K. Konno, C. Hirayama, M. Nakamura, K. Tateishi, Y. Tamura, M. Hattori, K. Kohno. Papain protects papaya trees from herbivorous insects: Role of cysteine proteases in latex. Plant Journal (2004). https://doi.org/10.1046/j.1365-313X.2003.01968.x.
[26] A.T. Himonides, A.K.D. Taylor, A.J. Morris. A Study of the Enzymatic Hydrolysis of Fish Frames Using Model Systems. Food and Nutrition Sciences (2011). https://doi.org/10.4236/fns.2011.26081.
[27] N. Bhaskar, T. Benila, C. Radha, R.G. Lalitha. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology (2008). https://doi.org/10.1016/j.biortech.2006.12.015.
[28] S. Nilsang, S. Lertsiri, M. Suphantharika, A. Assavanig. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering (2005). https://doi.org/10.1016/j.jfoodeng.2004.10.011.