Sự hài lòng và ý định tiếp tục sử dụng ứng dụng đặt đồ ăn trên di động ở thành phố Hồ Chí Minh
##plugins.themes.academic_pro.article.main##
Author
-
Lâm Ngọc Thuỳ, Tô Anh Thơ, Trần Thị Siêm, Nguyễn Tuấn Đạt
Từ khóa:
Tóm tắt
Các ứng dụng đặt đồ ăn (MFOAs) là một hình thức tiếp thị sáng tạo trên thiết bị di động hiện nay. Các nghiên cứu trước đây tại Việt Nam xem xét quan điểm của khách hàng đến việc sử dụng MFOAs. Mục đích của nghiên cứu này là xác định và kiểm tra thực nghiệm các yếu tố chính tác động đến mức độ hài lòng của khách hàng điện tử và ý định sử dụng lại MFOAs. Mô hình cấu trúc tuyến tính được sử dụng để kiểm tra các giả thuyết bằng việc phân tích dữ liệu của 352 khách hàng đã sử dụng MFOAs tại khu vực Thành phố Hồ Chí Minh. Kết quả nghiên cứu chỉ ra, ý định tiếp tục sử dụng MFOAs được thúc đẩy bởi hai yếu tố sự hài lòng điện tử và thói quen sử dụng; Trong khi sự hài lòng điện tử bị ảnh hưởng bởi tính hữu ích, tính giải trí, kỳ vọng nỗ lực và đánh giá trực tuyến. Nghiên cứu này có đóng góp về mặt lý thuyết cũng như ý nghĩa thực tiễn liên quan đến các ứng dụng đặt hàng trực tuyến hiện nay.
Tài liệu tham khảo
-
[1] R. F. Malaquias and Y. Hwang, “Mobile banking use: A comparative study with Brazilian and U.S. participants”, Int. J. Inf. Manage., vol. 44, pp. 132–140, 2019, doi: https://doi.org/10.1016/j.ijinfomgt.2018.10.004.
[2] C.-C. Lu, I.-L. Wu, and W.-H. Hsiao, “Developing customer product loyalty through mobile advertising: Affective and cognitive perspectives”, Int. J. Inf. Manage., vol. 47, pp. 101–111, 2019, doi: https://doi.org/10.1016/j.ijinfomgt.2018.12.020.
[3] Statista, “Number of apps available in leading app stores as of 4th quarter 2020”, 2020. https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/.
[4] Statista, “Number of mobile app downloads worldwide from 2016 to 2020(in billions)”, 2021. https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/.
[5] B. Okumus and B. Anil, “Proposing a model to test smartphone users’ intention to use smart applications when ordering food in restaurants”, J. Hosp. Tour. Technol., vol. 5, no. 1, pp. 31–49, Jan. 2014, doi: 10.1108/JHTT-01-2013-0003.
[6] Y.-S. Wang, T. H. Tseng, W.-T. Wang, Y.-W. Shih, and P.-Y. Chan, “Developing and validating a mobile catering app success model”, Int. J. Hosp. Manag., vol. 77, pp. 19–30, 2019, doi: https://doi.org/10.1016/j.ijhm.2018.06.002.
[7] A. S. Bùi, “Toàn cảnh về thị trường thức ăn trực tuyến tại Việt Nam”, 19/8/2019, 2019. https://www.linkedin.com/pulse/toàn-cảnh-về-thị-trường-thức-ăn-trực-tuyến-tại-việt-nam-son-bui-an.
[8] R. Algharabat, N. P. Rana, Y. K. Dwivedi, A. A. Alalwan, and Z. Qasem, “The effect of telepresence, social presence and involvement on consumer brand engagement: An empirical study of non-profit organizations”, J. Retail. Consum. Serv., vol. 40, pp. 139–149, 2018, doi: https://doi.org/10.1016/j.jretconser.2017.09.011.
[9] M. H. R., W. M. D., and D. Y. K., “What do we know about consumer m-shopping behaviour?”, Int. J. Retail Distrib. Manag., vol. 45, no. 6, pp. 568–586, Jan. 2017, doi: 10.1108/IJRDM-09-2016-0164.
[10] H. T. Nguyễn and T. H. N. Mai, “Nhân tố ảnh hưởng đến hành vi mua thức ăn nhanh qua Internet của người tiêu dùng tại Thành phố Đà Nẵng”, Tạp chí tài chính, vol. 2, 2019, [Online]. Available: https://tapchitaichinh.vn/tai-chinh-kinh-doanh/nhan-to-anh-huong-den-hanh-vi-mua-thuc-an-nhanh-qua-internet-cua-nguoi-tieu-dung-tai-tp-da-nang-307935.html.
[11] T. H. Nguyễn, “Các yếu tố ảnh hưởng đến quyết định chọn Grabfood của khách hàng tại Thành phố Hồ Chí Minh”, Luận Văn Thạc Sỹ. Đại học Bách Khoa, 2018.
[12] T. T. Nguyen, N. Nguyen, T. B. Nguyen, T. T. Phan, L. P. Bui, and H. C. Moon, “Investigating Consumer Attitude and Intention towards Online Food Purchasing in an Emerging Economy: An Extended TAM Approach”, Foods, vol. 8, no. 11. p. 576, 2019, doi: 10.3390/foods8110576.
[13] V. Venkatesh, J. Y. L. Thong, and X. Xu, “Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology”, MIS Q., vol. 36, no. 1, pp. 157–178, Feb. 2012, doi: 10.2307/41410412.
[14] V. C. S. Yeo, S.-K. Goh, and S. Rezaei, “Consumer experiences, attitude and behavioral intention toward online food delivery (OFD) services”, J. Retail. Consum. Serv., vol. 35, pp. 150–162, 2017, doi: https://doi.org/10.1016/j.jretconser.2016.12.013.
[15] B. Okumus, F. Ali, A. Bilgihan, and A. B. Ozturk, “Psychological factors influencing customers’ acceptance of smartphone diet apps when ordering food at restaurants”, Int. J. Hosp. Manag., vol. 72, pp. 67–77, 2018, doi: https://doi.org/10.1016/j.ijhm.2018.01.001.
[16] M. Cho, M. A. Bonn, and J. (Justin) Li, “Differences in perceptions about food delivery apps between single-person and multi-person households”, Int. J. Hosp. Manag., vol. 77, pp. 108–116, 2019, doi: https://doi.org/10.1016/j.ijhm.2018.06.019.
[17] S. Saumya, J. P. Singh, and Y. K. Dwivedi, “Predicting the helpfulness score of online reviews using convolutional neural network”, Soft Comput., vol. 24, no. 15, pp. 10989–11005, 2020, doi: 10.1007/s00500-019-03851-5.
[18] R. Filieri and F. McLeay, “E-WOM and Accommodation: An Analysis of the Factors That Influence Travelers’ Adoption of Information from Online Reviews”, J. Travel Res., vol. 53, no. 1, pp. 44–57, Mar. 2013, doi: 10.1177/0047287513481274.
[19] R. Filieri, “What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM”, J. Bus. Res., vol. 68, no. 6, pp. 1261–1270, 2015, doi: https://doi.org/10.1016/j.jbusres.2014.11.006.
[20] A. Elwalda, K. Lü, and M. Ali, “Perceived derived attributes of online customer reviews”, Comput. Human Behav., vol. 56, pp. 306–319, 2016, doi: https://doi.org/10.1016/j.chb.2015.11.051.
[21] R. E. Anderson and S. S. Srinivasan, “E-satisfaction and e-loyalty: A contingency framework”, Psychol. Mark., vol. 20, no. 2, pp. 123–138, Feb. 2003, doi: https://doi.org/10.1002/mar.10063.
[22] V. Zeithaml, A. P. Parasuraman, and L. Berry, “SERVQUAL: A multiple- Item Scale for measuring consumer perceptions of service quality”, J. Retail., pp. 257–263, Jan. 1988.
[23] A. Parasuraman, V. A. Zeithaml, and A. Malhotra, “E-S-QUAL: A Multiple-Item Scale for Assessing Electronic Service Quality”,
[24] J. Serv. Res., vol. 7, no. 3, pp. 213–233, Feb. 2005, doi: 10.1177/1094670504271156.
[25] J.-H. Kim and S. Lennon, “Electronic Retailing and Service Quality”, Serv. Manag. New Paradig. Retail., pp. 97–116, Dec. 2013, doi: 10.1007/978-1-4614-1554-1_7.
[26] R. S. Ali, U. Amna, Q. M. Asif, and D. A. Samad, “Internet banking service quality, e-customer satisfaction and loyalty: the modified e-SERVQUAL model”, TQM J., vol. 32, no. 6, pp. 1443–1466, Jan. 2020, doi: 10.1108/TQM-02-2020-0019.
[27] Y.-S. Wang, “Assessing e-commerce systems success: a respecification and validation of the DeLone and McLean model of IS success”, Inf. Syst. J., vol. 18, no. 5, pp. 529–557, Sep. 2008, doi: https://doi.org/10.1111/j.1365-2575.2007.00268.x.
[28] J. V Chen, D. Rungruengsamrit, T. M. Rajkumar, and D. C. Yen, “Success of electronic commerce websites: A comparative study in two countries”, Inf. Manag., vol. 50, pp. 344–355, 2013, doi: 10.1016/j.im.2013.02.007.
[29] S. Rose, M. Clark, P. Samouel, and N. Hair, “Online Customer Experience in e-Retailing: An empirical model of Antecedents and Outcomes”, J. Retail., vol. 88, no. 2, pp. 308–322, 2012, doi: https://doi.org/10.1016/j.jretai.2012.03.001.
[30] D. Cyr, “Modeling website design across cultures: Relationships to trust, satisfaction, and e-loyalty”, J. Manag. Inf. Syst., vol. 24, pp. 47–72, 2008, doi: 10.2753/MIS0742-1222240402.
[31] A. P. Kapoor and M. Vij, “Technology at the dinner table: Ordering food online through mobile apps”, J. Retail. Consum. Serv., vol. 43, pp. 342–351, 2018, doi: https://doi.org/10.1016/j.jretconser.2018.04.001.
[32] S. M. Alagoz and H. Hekimoglu, “A Study on Tam: Analysis of Customer Attitudes in Online Food Ordering System”, Procedia - Soc. Behav. Sci., vol. 62, pp. 1138–1143, 2012, doi: https://doi.org/10.1016/j.sbspro.2012.09.195.
[33] N. P. Rana, Y. K. Dwivedi, M. D. Williams, and V. Weerakkody, “Adoption of online public grievance redressal system in India: Toward developing a unified view”, Comput. Human Behav., vol. 59, pp. 265–282, 2016, doi: https://doi.org/10.1016/j.chb.2016.02.019.
[34] K. Tamilmani, N. P. Rana, N. Prakasam, and Y. K. Dwivedi, “The battle of Brain vs. Heart: A literature review and meta-analysis of ‘hedonic motivation’ use in UTAUT2”, Int. J. Inf. Manage., vol. 46, pp. 222–235, 2019, doi: https://doi.org/10.1016/j.ijinfomgt.2019.01.008.
[35] S. W. Lee, H. J. Sung, and H. M. Jeon, “Determinants of Continuous Intention on Food Delivery Apps: Extending UTAUT2 with Information Quality”, Sustainability, vol. 11, no. 11. p. 3141, 2019, doi: 10.3390/su11113141.
[36] N. Shaw and K. Sergueeva, “The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value”, Int. J. Inf. Manage., vol. 45, pp. 44–55, 2019, doi: https://doi.org/10.1016/j.ijinfomgt.2018.10.024.
[37] L. Kaewkitipong, C. C. Chen, and P. Ractham, “Using social media to enrich information systems field trip experiences: Students’ satisfaction and continuance intentions”, Comput. Human Behav., vol. 63, pp. 256–263, 2016, doi: https://doi.org/10.1016/j.chb.2016.05.030.
[38] M. Amin, S. Rezaei, and M. Abolghasemi, “User satisfaction with mobile websites: the impact of perceived usefulness (PU), perceived ease of use (PEOU) and trust”, Nankai Bus. Rev. Int., vol. 5, pp. 258–274, Jul. 2014, doi: 10.1108/NBRI-01-2014-0005.
[39] Z. Tao, “An empirical examination of initial trust in mobile banking”, Internet Res., vol. 21, no. 5, pp. 527–540, Jan. 2011, doi: 10.1108/10662241111176353.
[40] E. W. K. See-To and K. K. W. Ho, “Value co-creation and purchase intention in social network sites: The role of electronic Word-of-Mouth and trust – A theoretical analysis”, Comput. Human Behav., vol. 31, pp. 182–189, 2014, doi: https://doi.org/10.1016/j.chb.2013.10.013.
[41] P. Iyer, A. Davari, and A. Mukherjee, “Investigating the effectiveness of retailers’ mobile applications in determining customer satisfaction and repatronage intentions? A congruency perspective”, J. Retail. Consum. Serv., vol. 44, pp. 235–243, 2018, doi: https://doi.org/10.1016/j.jretconser.2018.07.017.
[42] C.-H. Hsiao, J.-J. Chang, and K.-Y. Tang, “Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives”, Telemat. Informatics, vol. 33, no. 2, pp. 342–355, 2016, doi: https://doi.org/10.1016/j.tele.2015.08.014.
[43] C. C. M.K., L. M. K.O., and R. Neil, “The impact of electronic word‐of‐mouth: The adoption of online opinions in online customer communities”, Internet Res., vol. 18, no. 3, pp. 229–247, Jan. 2008, doi: 10.1108/10662240810883290.
[44] C. Mathwick and J. Mosteller, “Online Reviewer Engagement: A Typology Based on Reviewer Motivations”, J. Serv. Res., vol. 20, no. 2, pp. 204–218, Dec. 2016, doi: 10.1177/1094670516682088.
[45] M. Limayem, S. G. Hirt, and C. M. K. Cheung, “How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance”, MIS Q., vol. 31, no. 4, pp. 705–737, Feb. 2007, doi: 10.2307/25148817.
[46] D. Amoroso and R. Lim, “The mediating effects of habit on continuance intention”, Int. J. Inf. Manage., vol. 37, no. 6, pp. 693–702, 2017, doi: https://doi.org/10.1016/j.ijinfomgt.2017.05.003.
[47] N. P. Rana, Y. K. Dwivedi, B. Lal, M. D. Williams, and M. Clement, “Citizens’ adoption of an electronic government system: towards a unified view”, Inf. Syst. Front., vol. 19, no. 3, pp. 549–568, 2017, doi: 10.1007/s10796-015-9613-y.
[48] J. Sun and T. Chi, “Key factors influencing the adoption of apparel mobile commerce: an empirical study of Chinese consumers”, J. Text. Inst., vol. 109, no. 6, pp. 785–797, Jun. 2018, doi: 10.1080/00405000.2017.1371828.
[49] C. Morosan and A. DeFranco, “It’s about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels”, Int. J. Hosp. Manag., vol. 53, pp. 17–29, 2016, doi: https://doi.org/10.1016/j.ijhm.2015.11.003.
[50] I. Ajzen and M. Fishbein, “The Influence of Attitudes on Behavior.”, in The handbook of attitudes., Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers, 2005, pp. 173–221.
[51] G. Christodoulides and N. Michaelidou, “Shopping motives as antecedents of e-satisfaction and e-loyalty”, J. Mark. Manag., vol. 27, no. 1–2, pp. 181–197, Dec. 2010, doi: 10.1080/0267257X.2010.489815.
[52] D. Cyr, C. Bonanni, J. Bowes, and J. Ilsever, “Beyond trust: Web site design preferences across cultures”, J. Glob. Inf. Manag., vol. 13, pp. 25–54, 2005, doi: 10.4018/jgim.2005100102.
[53] A. Bhattacherjee, “An empirical analysis of the antecedents of electronic commerce service continuance”, Decis. Support Syst., vol. 32, no. 2, pp. 201–214, 2001, doi: https://doi.org/10.1016/S0167-9236(01)00111-7.
[54] V. A. Zeithaml, L. L. Berry, and A. Parasuraman, “The Behavioral Consequences of Service Quality”, J. Mark., vol. 60, no. 2, pp. 31–46, Apr. 1996, doi: 10.1177/002224299606000203.
[55] D. J. Kim, D. L. Ferrin, and H. R. Rao, “Trust and satisfaction, two stepping stones for successful e-commerce relationships: A longitudinal exploration”, Inf. Syst. Res., vol. 20, pp. 237–257, 2009, doi: 10.1287/isre.1080.0188.
[56] M. Hair, J.F., Hult, G.T.M., Ringle, C.M., and Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed. Los Angeles: SAGE Publications, 2017.
[57] L. T. Hu and P.. Bentler, “Cutoff Criteria for Fit Indexes in Covariance Structure Analysis Conventional Criteria Versus New AlternativesNo Title”, Struct. Equ. Model., pp. 1–55, 1999.
[58] J. Henseler, C. Ringle, and R. R. Sinkovics, “The Use of Partial Least Squares Path Modeling in International Marketing”, in Advances in International Marketing, vol. 20, 2009, pp. 277–319.
[59] M. Hair, J.F., Hult, G.T.M., Ringle, C.M., and Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS SEM). Thousand Oaks, 2014.
[60] J. F. Hair, C. M. Ringle, and M. Sarstedt, “PLS-SEM: Indeed a Silver Bullet”, J. Mark. Theory Pract., vol. 19, no. 2, pp. 139–152, Apr. 2011, doi: 10.2753/MTP1069-6679190202.
[61] R. P. Bagozzi, Y. Yi, and L. W. Phillips, “Assessing Construct Validity in Organizational Research”, Adm. Sci. Q., vol. 36, no. 3, pp. 421–458, 1991, doi: 10.2307/2393203.
[62] J. Hair, M. Sarstedt, C. Ringle, and S. Gudergan, Advanced Issues in Partial Least Squares Structural Equation Modeling. 2017.
[63] J. Henseler, C. M. Ringle, and M. Sarstedt, “A new criterion for assessing discriminant validity in variance-based structural equation modeling”, J. Acad. Mark. Sci., vol. 43, no. 1, pp. 115–135, 2015, doi: 10.1007/s11747-014-0403-8.
[64] R. A. Fisher, “On the Interpretation of χ2 from Contingency Tables, and the Calculation of P”, J. R. Stat. Soc., vol. 85, no. 1, pp. 87–94, Jan. 1922, doi: 10.2307/2340521.
[65] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers, 1988.
[66] S. Geisser, “A Predictive Approach to the Random Effect Model”, Biometrika, vol. 61, no. 1, pp. 101–107, 1974, doi: 10.2307/2334290.
[67] D. T. Nguyễn, T. D. Nguyễn, and H. T. Cao, “Sự chấp nhận và sử dụng đào tạo trực tuyến trên điện toán đám mây”, Tạp chí Phát triển KH&CN, vol. Tập 17-Q3, pp. 116–135, 2014.
[68] D. T. Nguyễn and H. T. Cao, “Đề xuất mô hình chấp nhận và sử dụng ngân hàng điện tử ở Việt Nam”, Tạp chí Phát triển KH&CNPhát, vol. Tập 14-Q2, pp. 97–105, 2011.
[69] Z. Jiang and I. Benbasat, “Virtual Product Experience: Effects of Visual and Functional Control of Products on Perceived Diagnosticity and Flow in Electronic Shopping”, J. Manag. Inf. Syst., vol. 21, pp. 111–148, Jan. 2005, doi: 10.2139/ssrn.1400827.
[70] K. C. Lee and N. Chung, “Understanding factors affecting trust in and satisfaction with mobile banking in Korea: A modified DeLone and McLean’s model perspective”, Interact. Comput., vol. 21, no. 5–6, pp. 385–392, Dec. 2009, doi: 10.1016/j.intcom.2009.06.004.