Ứng dụng mô hình kết hợp GCN-Wavenet trong dự báo tải ngắn hạn cho hệ thống lưới điện nhỏ
##plugins.themes.academic_pro.article.main##
Author
-
Nguyễn Thanh HoanTổng công ty Điện lực Tp. Hồ Chí MinhLê Duy PhúcTổng công ty Điện lực Tp. Hồ Chí MinhTrương Việt AnhTrường Đại học Sư phạm Kỹ thuật Tp. Hồ Chí MinhNguyễn Hữu VinhTổng công ty Điện lực Tp. Hồ Chí MinhTrương Đình NhơnTrường Đại học Sư phạm Kỹ thuật Tp. Hồ Chí MinhLê Kim HùngTrường Đại học Bách khoa - Đại học Đà Nẵng
Từ khóa:
Tóm tắt
Dự báo phụ tải điện là một vấn đề quan trọng trong quản lý năng lượng lưới điện nhỏ (Microgrid - MG). Dự báo phụ tải với việc xem xét nhiều yếu tố tác động để nâng cao độ chính xác và đáp ứng cho những biến động của các yếu tố đó là vấn đề đang được quan tâm trong MG. Bài báo này đề xuất một phương pháp tích hợp mới để dự báo phụ tải ngắn hạn (STLF); Xem xét sử dụng cả chuỗi dữ liệu dài và ngắn của phụ tải và một số yếu tố như công suất đỉnh, nhiệt độ,… để dự báo nhu cầu tải hàng giờ của MG. Nhóm tác giả xem xét một mô hình dự đoán với nhiều yếu tố, nghiên cứu này đã tích hợp Mạng tích chập đồ thị (Graph Convolutional Network - GCN) vào các nút của mạng Wavenet. Mô hình dự báo được so sánh với các mô hình dự báo trước đó. Kết quả cho thấy, mô hình đề xuất của nhóm tác giả vượt trội hơn các mô hình dựa trên học sâu khác về RMSE và MAPE.
Tài liệu tham khảo
-
[1] Yu K, Ai Q, Wang S, Ni J, Lv T, “Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model”, IEEE Transactions on Smart Grid, 2016, 7(2), 1-11.
[2] Tayab UB, Humayun QM, “Enhanced droop controller for operating parallel-connected distributed-generation inverters in a microgrid”, J Renew Sustain Energy, 2018,10(4), 045303.
[3] Usman Bashir Tayab, Ali Zia, Fuwen Yang, Junwei Lu, “Muhammad Kashif. Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform”, Journal Elsevier Energy, 2020, DOI 10.1016/j.energy.2020.117857.
[4] Fernando Dorado Rueda; Jaime Durán Suárez; Alejandro del Real Torres, “Short-Term Load Forecasting Using Encoder-Decoder WaveNet: Application to the French Grid”, Energies, 2021, 14, 2524. DOI: 1996-1073/14/9/2524.
[5] Phúc Duy, B. Dương Minh, P. Duy Anh; N. Hoan Thanh; B. Hoài Đức; N. Tùng Minh; N. Khôi Minh; Đ. Minh Ngọc; N. Dũng Việt, “Applying statistical analysis for assessing the reliability of input data to improve the quality of short-term load forecasting for a Ho Chi Minh City distribution network”, Science & Technology Development Journal - Engineering and Technology, 2 (4), 2020, 223-239.
[6] Niu, D.; Wang, Y.; Wu, D.D, “Power load forecasting using support vector machine and ant colony optimization”, Expert Syst. Appl, 2010, 37, 2531–2539.
[7] Bui, Duong Minh, Le, Phuc Duy, Cao, Minh Tien, Pham, Trang Thi, Pham, Duy Anh, “Accuracy improvement of various short-term load forecasting models by a novel and unified statistical data-filtering method”, International Journal of Green Energy, 17 (7), 2020, 382-406.
[8] Bui, D.M., Le, P.D., Cao, T.M. et al., “A Statistical Data-Filtering Method Proposed for Short-Term Load Forecasting Models”, Journal of Electrical Engineering & Technology, 2020.
[9] Zhang, R.; Dong, Z.Y.; Xu, Y.; Meng, K.; Wong, K.P, “Short-term load forecasting of Australian National Electricity Market by an ensemble model of extreme learning machine”, IET Gener. Transm. Distrib, 2013, 7, 391–397.
[10] Ghofrani, M.; Ghayekhloo, M.; Arabali, A.; Ghayekhloo, A, “A hybrid short-term load forecasting with a new input selection framework”, Energy, 2015, 81, 777–786.
[11] Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2017, 10, 841–851.
[12] Park, K.; Yoon, S.; Hwang, E, “Hybrid load forecasting for mixed-use complex based on the characteristic load decomposition by pilot signals”, IEEE Access, 2019, 7, 12297–12306.
[13] Tian, C.; Ma, J.; Zhang, C.; Zhan, P., “A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network”, Energies, 2018, 11, 3493.
[14] Han, L.; Peng, Y.; Li, Y.; Yong, B.; Zhou, Q.; Shu, L., “Enhanced deep networks for short-term and medium-term load forecasting”, IEEE Access, 2018, 7, 4045–4055.
[15] Bo-Juen C, Ming-Wei C, Chih-Jen L, “Load forecasting using support vector Machines: a study on EUNITE competition 2001”, IEEE Trans Power Syst, 2004, 19(4):1821e30.
[16] Che J, Wang J., “Short-term load forecasting using a kernel-based support vector regression combination model”, Appl Energy, 2014;132:602e9.
[17] Hong W-C., “Electric load forecasting by support vector model”, Appl Math Model 2009;33(5):2444e54.
[18] Ceperic E, Ceperic V, Baric A, “A strategy for short-term load forecasting by support vector regression machines”, IEEE Trans Power Syst, 2013, 28(4): 4356e64.
[19] Selakov A, Cvijetinovic D, Milovic L, Mellon S, Bekut D., “Hybrid PSOeSVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank”, Appl Soft Comput, 2014, 16: 03/01/2014 80e8.
[20] Sun W., “A novel hybrid GA based SVM short term load forecasting model”. 2009 second international symposium on knowledge acquisition and modeling, vol. 2; 2009. p. 227e9.
[21] Kavousi-Fard A, Samet H, Marzbani F., “A new hybrid modified firefly algorithm and support vector regression model for accurate short-term load forecasting”, Expert Syst Appl 2014, 41(13):6047e56. /10/01/2014.
[22] Barman M, Dev Choudhury NB., “Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept”, Energy, 2019, 174: /05/ 01/2019 886e96.
[23] Barman M, Dev Choudhury NB, Sutradhar S., “A regional hybrid Goa-SVM model based on similar day approach for short-term load forecasting in Assam, India”, Energy, 2018, 145: /02/15/2018 710e20.
[24] Lu H, Azimi M, Iseley T., “Short-term load forecasting of urban gas using a hybrid model based on improved fruit fly optimization algorithm and support vector machine”, Energy Rep, 2019, 5:666e77.
[25] Jiang H, Zhang Y, Muljadi E, Zhang JJ, Gao DW., “A short-term and highresolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization”, IEEE Transactions on Smart Grid, 2018, 9(4):3341e50.
[26] Wang X, Wang Y., “A hybrid model of EMD and PSO-SVR for short-term load forecasting in residential quarters”, Journal of Mathematical Problems in Engineering, 2016, 2016:1e10.
[27] Qiang S, Pu Y., “Short-term power load forecasting based on support vector machine and particle swarm optimization”, J Algorithm Comput Technol, 2018, 13.
[28] Chen Q, Wu Y, Zhang X, Chen X., “Forecasting system based on wavelet transform and PSO-SVM”, 2nd international conference on anti-counterfeiting. Security and Identification, 2008., p. 305e9. 2008.
[29] Sun W, Ye M., “Short-term load forecasting based on wavelet transform and least squares support vector machine optimized by fruit fly optimization algorithm”, Journal of Electrical and Computer Engineering, 2015, 2015:1e10.
[30] Liu J-p, Li C-l., “The short-term power load forecasting based on sperm whale algorithm and wavelet least square support vector machine with DWT-IR for feature selection”, Sustainability, 2017, 9(7):1188.
[31] Santhadevi D; Janet B., “DLSTM-HHO: Enhanced Deep Learning Framework for Malware Detection at the Edge of the Iot System”, Research Square, 2021, DOI: 10.21203/rs.3.rs-713566/v1
[32] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu, “A comprehensive survey on graph neural networks”, arXiv preprint arXiv, 2019, 1901.00596.
[33] Shirui Pan, Ruiqi Hu, Sai-fu Fung, Guodong Long, Jing Jiang, and Chengqi Zhang, “Learning graph embedding with adversarial training methods”, In IJCAI, 2018.
[34] Thomas N Kipf and Max Welling, “Semi-supervised classification with graph convolutional networks”, In ICLR, 2017.
[35] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec, “Hierarchical graph representation learning with differentiable pooling”, In NIPS, 2018, 4800–4810.
[36] Muhan Zhang and Yixin Chen, “Link prediction based on graph neural networks”, In NIPS, 2018, 5165–5175.
[37] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang, “Mgae: Marginalized graph autoencoder for graph clustering”, In CIKM ACM, 2017, 889–898.
[38] Zonghan Wu, Shirui Pan, Guodong Long, and Jing Jiang, “Graph WaveNet for Deep Spatial-Temporal Graph Modeling”, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), 2020, 1907-1913.
[39] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu, “Diffusion convolutional recurrent neural network: Data-driven traffic forecasting”, In ICLR, 2018.
[40] J. Smola and B. Schlkopf, “A tutorial on support vector regression”, Statistics and Computing, 2004, 14(3), 199–222.
[41] Yin, S. C. Wong, J. Xu, and C. K. Wong, “Urban traffic flow prediction using a fuzzy-neural approach”, Transportation Research Part C, 2002, 10(2), 85–98.
[42] Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D. Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and M. Lanctot, “Mastering the game of go with deep neural networks and tree search”, Nature, 2016, 529(7587), 484–489.
[43] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, and A. Bolton, “Mastering the game of go without human knowledge”, Nature, 2017, 550(7676), 354–359.