Thành phần hóa học và hoạt tính sinh học của lá đinh lăng lá nhỏ (Polyscias Fruticosa (L.) Harms)
##plugins.themes.academic_pro.article.main##
Author
-
La Thị Kim TúTrường Đại học Cần Thơ, Cần Thơ, Việt NamTrương Thị Phương ThảoTrường Đại học Cần Thơ, Cần Thơ, Việt NamTrần Thanh MếnTrường Đại học Cần Thơ, Cần Thơ, Việt Nam
Từ khóa:
Tóm tắt
Nghiên cứu thực hiện nhằm khảo sát hàm lượng dinh dưỡng và hoạt tính sinh học của lá đinh lăng lá nhỏ (Polyscias fruticosa). Kết quả cho thấy, trong 100 g lá đinh lăng chứa 3,44 ± 0,03% protein, 0,28 ± 0,01% chất béo, 10,50 ± 0,88% carbohydrate, 1,77 ± 0,01% tro và 58,28 ± 3,36 Kcal/100g. Hoạt tính kháng oxy hóa của chiết xuất được xác định bằng phương pháp DPPH, ABTS•+ và RP với giá trị EC50 lần lượt là 1151,59 ± 3,80 µg/mL; 107,07 ± 1,97 µg/mL và 49,04 ± 0,38 µg/mL. Hàm lượng phenolic và flavonoid tổng của cao chiết được xác định lần lượt là 156,34 ± 1,92 mgGAE/g và 441,79 ± 6,14 mgQE/g cao chiết. Bên cạnh đó, khả năng chống chịu stress oxy hóa (gây ra bởi H2O2 hoặc paraquat), khả năng vận động và sinh sản của ruồi giấm được cải thiện khi bổ sung cao chiết ở nồng độ 1 mg/mL. Kết quả nghiên cứu chứng minh lá cây đinh lăng lá nhỏ là nguồn dược liệu hữu ích và có tiềm năng ứng dụng cao trong hỗ trợ sức khỏe cho con người.
Tài liệu tham khảo
-
[1] Calenic et al.," Oxidative stress and volatile organic compounds: interplay in pulmonary, cardio-vascular, digestive tract systems and cancer", Open Chemistry, vol. 13, no. 1, 2015.
[2] Pizzino et al., "Oxidative stress: harms and benefits for human health", Oxidative medicine and cellular longevity, vol. 2017, 2017.
[3] T. Men et al., "Anti-aging effects of Lasia spinosa L. Stem extract on Drosophila melanogaster", Food Science and Technology, vol. 42, pp. e38721, 2021.
[4] H. T. Le, " Research on extraction and determination of chemical composition of some hibiscus leaf extracts (Hibiscus rosa–sinensis L)", The University of Danang - University of Science Education, 2018.
[5] T. K. Dung and P. P. Nhan, " Identifying content of raw oil and protein in some seeds", Journal of Science and Technology, vol. 15, pp. 15-18, 2014.
[6] K. Shittu and A. Abubakar, "Evaluation of Phytochemicals, Proximate, Minerals and Anti-nutritional composition of Yam peel", Maize chaff and Bean coat, vol. 6, pp. 21-37, 2014.
[7] K. Purcell et al., "Sport nutrition for young athletes", Paediatrics and child health, vol. 18, no. 4, pp. 200-202, 2013.
[8] Sofowora, "Recent trends in research into African medicinal plants", Journal of ethnopharmacology, vol. 38, no. 2-3, 197-208, 1993.
[9] Jayaprakasha and B. S. Patil., "In vitro evaluation of the antioxidant activities in fruit extracts from citron and blood orange", Food chemistry, vol. 101, no. 1, pp. 410-418, 2007.
[10] Ohadoma et al., "Quantitative estimation of total phenolic and total flavonoid contents of ethylacetate fraction of Chikadoma as a bactericidal agent", Asian J Sci & Tech, vol. 11, no. 6, pp. 11012-11014, 2020.
[11] -Y. Lin and F.-J. Chang, "Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356", Digestive diseases and sciences, vol. 45, pp. 1617-1622, 2000.
[12] Re et al., "Antioxidant activity applying an improved ABTS radical cation decolorization assay", Free radical biology and medicine, vol. 26, no. 9-10, pp. 1231-1237, 1999.
[13] -Y. Lin and C.-L. Yen., "Antioxidative ability of lactic acid bacteria", Journal of agricultural and food chemistry, vol. 47, no. 4, pp. 1460-1466, 1999.
[14] Poós and E. Varju., "Drying characteristics of medicinal plants", International Review of Applied Sciences and Engineering, vol. 8, no. 1, pp. 83-91, 2017.
[15] D. C. Siacor et al., "Physicochemical properties of spray-dried mango phenolic compounds extracts", Journal of Agriculture and Food Research, vol. 2, pp. 100048, 2020.
[16] Lanning, T. Hopkins, and J. Loera., "Silica and ash content and depositional patterns in tissues of mature Zea mays L. Plants", Annals of Botany, vol. 45, no. 5, pp. 549-554, 1980.
[17] Atangwho et al., "Comparative chemical composition of leaves of some antidiabetic medicinal plants: Azadirachta indica, Vernonia amygdalina and Gongronema latifolium", African Journal of Biotechnology, vol. 8, no. 18, 2009.
[18] E. Al-Snafi, "Oils and fats contents of medicinal plants, as natural ingredients for many therapeutic purposes-A review", IOSR J. Pharm, vol. 10, no. 7, pp. 1-41, 2020.
[19] D. Chapman, J. M. Dyer, and R. T. Mullen., "Commentary: why don’t plant leaves get fat?", Plant Science, vol. 207, pp. 128-134, 2013.
[20] Tungmunnithum et al., "Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview", Medicines, vol. 5, no. 3, pp. 93, 2018.
[21] P. Tuan and N. T. A. Lan, "Antioxidant activity, α-amylase and α-glucosidase inhibiting activities of the extract of Barringtonia acutangula leaves". Hue University of Agriculture and Forestry - Journal of Agricultural Science and Technology, vol. 6, no. 2, pp. 2983-2993, 2022.
[22] E. Rasmussen et al., "Dietary proanthocyanidins: occurrence, dietary intake, bioavailability, and protection against cardiovascular disease", Molecular nutrition & food research, vol. 49, no. 2, pp. 159-174, 2005.
[23] M. Mutungi et al., "Antioxidant and antiproliferative potentials of Ficus glumosa and Its Bioactive Polyphenol Metabolites", Pharmaceuticals, vol. 14, no. 3, pp. 266, 2021.
[24] Pérez-Balladares et al., "Chemical composition and antioxidant activity of the main fruits, tubers and legumes traditionally consumed in the Andean regions of Ecuador as a source of health-promoting compounds", Plant Foods for Human Nutrition, vol. 74, pp. 350-357, 2019.
[25] Ermis, N. Zare, R. Darabi, and M. Alizadeh, "Recent advantage in electrochemical monitoring of gallic acid and kojic acid: A new perspective in food science", Journal of Food Measurement and Characterization, vol. 17, no. 4, pp. 1-10, 2023.
[26] Sun et al., "Anti-aging mechanism and rheological properties of lignin, quercetin, and gallic acid as antioxidants in asphalt", Construction and Building Materials, vol. 369, pp. 130560, 2023.
[27] Baharfar, R. Azimi, and M. Mohseni., "Antioxidant and antibacterial activity of flavonoid-, polyphenol-and anthocyanin-rich extracts from Thymus kotschyanus boiss & hohen aerial parts", Journal of food science and technology, vol. 52, pp. 6777-6783, 2015.
[28] T. Mansouri et al., "A possible mechanism for the anxiolytic-like effect of gallic acid in the rat elevated plus maze", Pharmacology Biochemistry and Behavior, vol. 117, pp. 40-46, 2014.
[29] Palsamy and S. Subramanian, "Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin–nicotinamide-induced diabetic rats", Chemico-biological interactions, vol. 179, no. 2-3, pp. 356-362, 2009.
[30] Karbach et al., "eNOS uncoupling in cardiovascular diseases-the role of oxidative stress and inflammation", Current pharmaceutical design, vol. 20, no. 22, pp. 3579-3594, 2014.
[31] Chen et al., "Reactive oxygen species: key regulators in vascular health and diseases", British journal of pharmacology, vol. 175, no. 8, pp. 1279-1292, 2018.
[32] Demerec and B. Kaufman, Drosophila guide: introductiont to the genetics and Cytology of. Drosophila melanogaster, The Institition, Washington, 1996, pp. 1-27.
[33] Tchekalarova and R. Tzoneva., "Oxidative Stress and Aging as Risk Factors for Alzheimer’s Disease and Parkinson’s Disease: The Role of the Antioxidant Melatonin", International Journal of Molecular Sciences, vol. 24, no. 3, pp. 3022, 2023.
[34] S. K. Raut and M. Khullar., "Oxidative stress in metabolic diseases: Current scenario and therapeutic relevance", Molecular and cellular biochemistry, vol. 478, no. 1, pp. 185-196, 2023.