Ảnh hưởng của nhiệt độ chiết xuất đến hoạt tính chống oxy hóa của polysacharides từ lá sâm đá (Myxopyrum smilacifolium)
##plugins.themes.academic_pro.article.main##
Author
-
Le Trung HieuUniversity of Sciences, Hue University, Thua Thien Hue, VietnamLe Lam SonUniversity of Sciences, Hue University, Thua Thien Hue, VietnamNguyen Minh NhungUniversity of Sciences, Hue University, Thua Thien Hue, VietnamHo Xuan Anh VuUniversity of Sciences, Hue University, Thua Thien Hue, VietnamNguyen Quang ManUniversity of Medicine and Pharmacy, Hue University, Thua Thien Hue, VietnamTran Thanh MinhUniversity of Sciences, Hue University, Thua Thien Hue, VietnamNguyen Viet ThangUniversity of Sciences, Hue University, Thua Thien Hue, VietnamNguyen Thi NhuUniversity of Sciences, Hue University, Thua Thien Hue, VietnamNguyen Thi Hong HanhUniversity of Sciences, Hue University, Thua Thien Hue, VietnamNguyen Hoang Luong NgocUniversity of Sciences, Hue University; Ho Chi Minh City University of Industry and Trade, Ho Chi Minh, VietnamTran Thi Van ThiUniversity of Sciences, Hue University, Thua Thien Hue, Vietnam
Từ khóa:
Tóm tắt
Mục tiêu của bài báo này là nghiên cứu ảnh hưởng của nhiệt độ chiết đến tiềm năng chống oxy hóa in vitro của polysaccharide thu được từ lá Sâm đá (Myxopyrum smilacifolium). Kết quả cho thấy, ở nhiệt độ chiết là 90°C thì hoạt tính chống oxy hóa của polysaccharide là cao nhất. Phân tích quang phổ hồng ngoại biến đổi Fourier cho thấy, PS-T90 thể hiện các nhóm hấp thụ đặc trưng thường thấy trong các cấu trúc polysaccharide. Trọng lượng phân tử trung bình của polysaccharide được chiết xuất là khoảng 9,30×105 Da. Tổng hàm lượng chống oxy hóa quy tương đương của PS-T90 được xác định là 0,2646 ± 0,0007 mg GA/g hoặc 0,1725 ± 0,0007 mg AS/g. Hơn nữa, các giá trị IC50 trong các mô hình bắt gốc tự do DPPH và ABTS của PS-T90 lần lượt là 1,04 mg/mL và 3,37 mg/mL. Hoạt tính sinh học nổi bật như vậy có thể thúc đẩy việc sử dụng PS-T90 như một nguồn đầy hứa hẹn để phát triển chất chống oxy hóa.
Tài liệu tham khảo
-
[1] -Q. Wang, J.-Y. Yin, S.-P. Nie, and M.-Y. Xie, "A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective”, Food Research International, vol. 143, p. 110290, 2021.
[2] S. Ferreira, C. P. Passos, P. Madureira, M. Vilanova, and M. A. Coimbra, "Structure–function relationships of immunostimulatory polysaccharides: A review”, Carbohydrate polymers, vol. 132, pp. 378-396, 2015.
[3] Chen, J. Yang, M. Shen, Y. Chen, Q. Yu, and J. Xie, "Structure, function and advance application of microwave-treated polysaccharide: A review”, Trends in Food Science & Technology, 2022.
[4] Cazón, G. Velazquez, J. A. Ramírez, and M. Vázquez, "Polysaccharide-based films and coatings for food packaging: A review”, Food Hydrocolloids, vol. 68, pp. 136-148, 2017.
[5] Zheng, W. Ren, L. Zhang, Y. Zhang, D. Liu, and Y. Liu, "A review of the pharmacological action of Astragalus polysaccharide”, Frontiers in Pharmacology, vol. 11, p. 349, 2020.
[6] Liu, Y. Cui, F. Pi, Y. Cheng, Y. Guo, and H. Qian, "Extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, a polysaccharide from aloe vera: A review”, Molecules, vol. 24, no. 8, p. 1554, 2019.
[7] Nai et al., "Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide”, International Journal of Biological Macromolecules, vol. 183, pp. 2337-2353, 2021.
[8] R. Bandara, S. Rapior, P. E. Mortimer, P. Kakumyan, K. D. Hyde, and J. Xu, "A review of the polysaccharide, protein and selected nutrient content of Auricularia, and their potential pharmacological value”, Mycosphere Journal, vol. 10, no. 1, pp. 579-607, 2019.
[9] Q. Vuong et al., "Chemical constituents from the roots of Myxopyrum smilacifolium”, Vietnam Journal of Science and Technology, vol. 59, no. 4, pp. 498-506, 2021.
[10] Gopalakrishnan, R. Rajameena, and E. Vadivel, "Antimicrobial activity of the leaves of Myxopyrum serratulum AW Hill”, Int. J. Pharm. Sci. Drug. Res, vol. 4, pp. 31-34, 2012.
[11] Maruthamuthu, L. J. K. Henry, M. K. Ramar, and R. Kandasamy, "Myxopyrum serratulum ameliorates airway inflammation in LPS-stimulated RAW 264.7 macrophages and OVA-induced murine model of allergic asthma”, Journal of ethnopharmacology, vol. 255, p. 112369, 2020.
[12] H. Le et al., "Rich d-Fructose-Containing Polysaccharide Isolated from Myxopyrum smilacifolium Roots toward a Superior Antioxidant Biomaterial”, ACS omega, Vol. 7, No. 51, pp. 47923-47932, 2022.
[13] H. Le et al., "Unfolding the structure of polysaccharide isolated from Myxopyrum smilacifolium leaves toward a robust antioxidant”, Bioactive Carbohydrates and Dietary Fibre, Vol. 29, p. 100347, 2023.
[14] Réblová, "Effect of temperature on the antioxidant activity of phenolic acids”, Czech Journal of Food Sciences, vol. 30, no. 2, pp. 171-175, 2012.
[15] R. Cordenunsi, M. I. Genovese, J. R. O. do Nascimento, N. M. A. Hassimotto, R. J. dos Santos, and F. M. Lajolo, "Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars”, Food chemistry, vol. 91, no. 1, pp. 113-121, 2005.
[16] S. Padda and D. Picha, "Effect of low temperature storage on phenolic composition and antioxidant activity of sweetpotatoes”, Postharvest Biology and Technology, vol. 47, no. 2, pp. 176-180, 2008.
[17] Cai, B. Chen, F. Yi, and S. Zou, "Optimization of extraction of polysaccharide from dandelion root by response surface methodology: Structural characterization and antioxidant activity”, International journal of biological macromolecules, vol. 140, pp. 907-919, 2019.
[18] Qu, S. Yu, H. Jin, J. Wang, and L. Luo, "The pretreatment effects on the antioxidant activity of jujube polysaccharides”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 114, pp. 339-343, 2013.
[19] Wang et al., "Optimization of polysaccharides extraction from seeds of Pharbitis nil and its anti-oxidant activity”, Carbohydrate polymers, vol. 102, pp. 460-466, 2014.
[20] DuBois, K. A. Gilles, J. K. Hamilton, P. t. Rebers, and F. Smith, "Colorimetric method for determination of sugars and related substances”, Analytical chemistry, vol. 28, no. 3, pp. 350-356, 1956.
[21] D. Nair, R. Panneerselvam, and R. Gopi, "Studies on methanolic extract of Rauvolfia species from Southern Western Ghats of India–In vitro antioxidant properties, characterisation of nutrients and phytochemicals”, Industrial Crops and Products, vol. 39, pp. 17-25, 2012.
[22] H. Le et al., "Structural characterization of mannoglucan isolated from Ophiocordyceps sobolifera and its antioxidant activities”, ACS omega, vol. 7, no. 11, pp. 9397-9405, 2022.
[23] Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, "Antioxidant activity applying an improved ABTS radical cation decolorization assay”, Free radical biology and medicine, vol. 26, no. 9-10, pp. 1231-1237, 1999.
[24] Wang, W. Li, X. Rui, X. Chen, M. Jiang, and M. Dong, "Structural characterization and bioactivity of released exopolysaccharides from Lactobacillus plantarum 70810”, International journal of biological macromolecules, vol. 67, pp. 71-78, 2014.
[25] Van Khoa, H. X. A. Vu, T. T. Kiet, and T. T. Van Thi, "Effect of extraction temperatures on in vitro antioxidant activities of polysaccharides from Ophiocordyceps sobolifera”, Hue University Journal of Science: Natural Science, vol. 128, no. 1D, pp. 17-21, 2019.
[26] Long, Q. Yan, L. Peng, X. Liu, and X. Luo, "Effect of various temperatures on bletillae rhizoma polysaccharide extraction and physicochemical properties”, Applied Sciences, vol. 9, no. 1, p. 116, 2018.
[27] Zhao et al., "Antioxidant and immunomodulatory activities of polysaccharides from the rhizome of Dryopteris crassirhizoma Nakai”, International journal of biological macromolecules, vol. 130, pp. 238-244, 2019.
[28] -H. Dong and Y.-J. Yao, "In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis”, LWT-Food Science and Technology, vol. 41, no. 4, pp. 669-677, 2008.
[29] Sila, N. Bayar, I. Ghazala, A. Bougatef, R. Ellouz-Ghorbel, and S. Ellouz-Chaabouni, "Water-soluble polysaccharides from agro-industrial by-products: functional and biological properties”, International Journal of Biological Macromolecules, vol. 69, pp. 236-243, 2014.
[30] Chen, G. Liu, H. Yang, H. Zhou, and H. Yang, "Effects of processing treatments on the antioxidant properties of polysaccharide from Cordyceps militaris”, International Journal of Food Engineering, vol. 13, no. 1, p. 20160076, 2017.
[31] V. T. Tran et al., "Chemical structure of a novel heteroglycan polysaccharide isolated from the biomass of Ophiocordyceps Sobolifera”, Journal of Molecular Structure, vol. 1232, p. 129986, 2021.
[32] Kacurakova, P. Capek, V. Sasinkova, N. Wellner, and A. Ebringerova, "FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses”, Carbohydrate polymers, vol. 43, no. 2, pp. 195-203, 2000.
[33] X. Liu, C. M. Renard, S. Bureau, and C. Le Bourvellec, "Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides”, Carbohydrate Polymers, vol. 262, p. 117935, 2021.