Experimental investigation of surface roughness of CT3 steel on adhesion strength of ARC spray Al -Mg alloy coating
##plugins.themes.academic_pro.article.main##
Author
-
Le Duc ThanhLe Quy Don Technical University, Hanoi, VietnamNguyen Thi Hai VanThe University of Danang - University of Technology and Education, Danang, VietnamHa Pham ThiInstitute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, VietnamTrinh Quang HungLe Quy Don Technical University, Hanoi, Vietnam
Từ khóa:
Tóm tắt
Thermal spray-applied AlMg alloy coatings are frequently utilized in a variety of technical applications because of great corrosion resistance, and environmental friendliness. In this work, the effect of abrasive spraying parameters on the surface roughness of CT3 steel specimens as well as the effect of the surface roughness on the adhesion strength of Al-Mg alloy spray coating were experimentally investigated. The surface roughness was assessed using a portable roughness gauge. The adhesion strength of the coating was evaluated by the pull-off test, according to the JIS H8664-1977 standard. The experimental findings indicate that air pressure and spraying distance have great impacts on the surface roughness of CT3 steel. The adhesion strength of the Al-Mg coating applied on CT3 steel is found to be almost linearly proportional to the surface roughness. The maximum adhesion strength of 14 MPa was achieved at the highest Rz of about 61 µm.
Tài liệu tham khảo
-
[1] Hou, “The cost of corrosion in China”, Cost Corros. China, pp. 1–941, 2019, doi: 10.1007/978-981-32-9354-0.
[2] Deng, Y. Huang, F. Azarmi, and Y. Wang, “Pitted Corrosion Detection of Thermal Sprayed Metallic Coatings Using Fiber Bragg Grating Sensors”, Coatings, vol. 7, no. 3, p. 35, 2017, doi: 10.3390/coatings7030035.
[3] A. Sørensen, S. Kiil, K. Dam-Johansen, and C. E. Weinell, “Anticorrosive coatings: A review”, J. Coatings Technol. Res., vol. 6, no. 2, pp. 135–176, 2009, doi: 10.1007/s11998-008-9144-2.
[4] Gulec, O. Cevher, A. Turk, F. Ustel, and F. Yilmaz, “Accelerated corrosion behaviors of Zn, Al and Zn/15Al coatings on a steel surface”, Mater. Tehnol., vol. 45, no. 5, pp. 477–482, 2011.
[5] Kong and R. White, “Toward cleaner production of hot dip galvanizing industry in China”, J. Clean. Prod., vol. 18, no. 10–11, pp. 1092–1099, 2010, doi: 10.1016/j.jclepro.2010.03.006.
[6] Syrek-Gerstenkorn, S. Paul, and A. J. Davenport, “Use of thermally sprayed aluminium (TSA) coatings to protect offshore structures in submerged and splash zones”, Surf. Coatings Technol., vol. 374, pp. 124–133, 2019, doi: 10.1016/j.surfcoat.2019.04.048.
[7] Li, “Corrosion behaviour of hot dip zinc and zinc-aluminium coatings on steel in seawater”, Bull. Mater. Sci., vol. 24, no. 4, pp. 355–360, 2001, doi: 10.1007/BF02708631.
[8] Abedi Esfahani, H. Salimijazi, M. A. Golozar, J. Mostaghimi, and L. Pershin, “Study of corrosion behavior of Arc sprayed aluminum coating on mild steel”, J. Therm. Spray Technol., vol. 21, no. 6, pp. 1195–1202, 2012, doi: 10.1007/s11666-012-9810-x.
[9] Gu et al., “Deposition of duplex Al 2 O 3 /aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation”, Appl. Surf. Sci., vol. 252, no. 8, pp. 2927–2932, 2006, doi: 10.1016/j.apsusc.2005.04.036.
[10] Irissou and B. Arsenault, “Corrosion Study of Cold Sprayed Aluminum Coatings onto Al 7075 Alloy”, Therm. Spray 2007 Proc. from Int. Therm. Spray Conf., vol. 83676, pp. 549–554, 2007, doi: 10.31399/asm.cp.itsc2007p0549.
[11] M. H. Pombo Rodriguez, R. S. C. Paredes, S. H. Wido, and A. Calixto, “Comparison of aluminum coatings deposited by flame spray and by electric arc spray”, Surf. Coatings Technol., vol. 202, no. 1, pp. 172–179, 2007, doi: 10.1016/j.surfcoat.2007.05.067.
[12] Q. Yang, Z. J. Yao, D. B. Wei, W. B. Zhou, G. X. Yin, and L. X. Feng, “Anticorrosion of thermal sprayed Al-Zn-Si coating in simulated marine environments”, Surf. Eng., vol. 30, no. 11, pp. 801–805, 2014, doi: 10.1179/1743294414Y.0000000315.
[13] R. Baldwin, R. I. Bates, R. D. Arnell, and C. J. E. Smith, “Aluminium-magnesium alloys as corrosion resistant coatings for steel”, Corros. Sci., vol. 38, no. 1, pp. 155–170, 1996, doi: 10.1016/0010-938X(96)00123-0.
[14] Romhanji and M. Popović, “Problems and prospect of Al-Mg alloys application in marine constructions”, Metalurgija, vol. 12, no. 4, pp. 297–307, 2006.
[15] Takatani, R. Shindo, K. Togoe, M. Shimatani, and Y. Harada, “Effects of Magnesium Contents in Thermal Sprayed Al-Mg Alloy Coatings on the Corrosion Characteristics”, J. Japan Therm. Spray Soc., vol. 51, no. 3, pp. 82–87, 2014.
[16] S. C. Paredes, S. C. Amico, and A. S. C. M. d’Oliveira, “The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying”, Surf. Coatings Technol., vol. 200, no. 9, pp. 3049–3055, 2006, doi: 10.1016/j.surfcoat.2005.02.200.
[17] Singh, P. Singh, H. Singh, and R. K. Buddu, “Characterization and comparison of copper coatings developed by low pressure cold spraying and laser cladding techniques”, Mater. Today Proc., vol. 18, pp. 830–840, 2019, doi: 10.1016/j.matpr.2019.06.509.
[18] Hussain, D. G. McCartney, P. H. Shipway, and D. Zhang, “Bonding mechanisms in cold spraying: The contributions of metallurgical and mechanical components”, J. Therm. Spray Technol., vol. 18, no. 3, pp. 364–379, 2009, doi: 10.1007/s11666-009-9298-1.
[19] Singh, H. Singh, S. Chaudhary, and R. K. Buddu, “Effect of substrate surface roughness on properties of cold-sprayed copper coatings on SS316L steel”, Surf. Coatings Technol., vol. 389, 2020, doi: 10.1016/j.surfcoat.2020.125619.
[20] Y. Wang, C. J. Li, and A. Ohmori, “Influence of substrate roughness on the bonding mechanisms of high velocity oxy-fuel sprayed coatings”, Thin Solid Films, vol. 485, no. 1–2, pp. 141–147, 2005, doi: 10.1016/j.tsf.2005.03.024.
[21] Sarikaya, “Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process”, Surf. Coatings Technol., vol. 190, no. 2–3, pp. 388–393, 2005, doi: 10.1016/j.surfcoat.2004.02.007.
[22] Poorna Chander, M. Vashista, K. Sabiruddin, S. Paul, and P. P. Bandyopadhyay, “Effects of grit blasting on surface properties of steel substrates”, Mater. Des., vol. 30, no. 8, pp. 2895–2902, 2009, doi: 10.1016/j.matdes.2009.01.014.
[23] Kemény, I. Hajdu, D. Károly, and D. Pammer, “Osseointegration specified grit blasting parameters”, Mater. Today Proc., vol. 5, no. 13, pp. 26622–26627, 2018, doi: 10.1016/j.matpr.2018.08.126.
[24] Mellali, A. Grimaud, A. C. Leger, P. Fauchais, and J. Lu, “Alumina grit blasting parameters for surface preparation in the plasma spraying operation”, J. Therm. Spray Technol., vol. 6, no. 2, pp. 217–227, 1997, doi: 10.1007/s11666-997-0016-6.
[25] F. Bahbou, P. Nylén, and J. Wigren, “Effect of grit blasting and spraying angle on the adhesion strength of a plasma-sprayed coating”, J. Therm. Spray Technol., vol. 13, no. 4, pp. 508–514, 2004, doi: 10.1361/10599630421406.
[26] Van Lieu, L. T. Quy, and L. T. P. Thanh, “Influence research
of surface roughness of the C45 and CT3 stell to quanlity of aluminum (Al) coating by thermal spray method”, Vietnam Journals Online, vol. 50, 2019, [Online]. Available: https://vjol.info.vn/index.php/dhcnhn/article/view/39727.
[27] Pawlowski, The Science and Engineering of Thermal Spray Coatings: Second Edition, 2008.
[28] J. Pignatiello, “An overview of the strategy and tactics of taguchi”, IIE Trans. Institute Ind. Eng., vol. 20, no. 3, pp. 247–254, 1988, doi: 10.1080/07408178808966177.
[29] ISO 12679:2011, Thermal spaying – Recommendations for thermal spaying, International Organization for Standardization, 2011.
[30] Moduk - DEF STAN 02-828, Requirements for Thermal Spay Deposition of Metals and Ceramics for Enginneering Purposes, British Defense Standards, 2013.
[31] NORSOK STANDARD M-501, Surface preparation and protective coating, Standards Norway, 2012.