Stabilizing the depth of a towed underwater vehicle under the impact of random sea-waves
##plugins.themes.academic_pro.article.main##
Author
-
Dang Nguyen PhuMilitary Technical Academy, VietnamTuan Vu DucUniversity of Transport Technology, Vietnam
Từ khóa:
Tóm tắt
Stabilizing the depth of the Towed Underwater Vehicle (TUV) under the impact of ocean waves is the first problem when building a control and monitoring system for TUV. Many strategies and control methods have been proposed in different studies, but they are not a general standard. Therefore, this research will propose and investigate a solution for synthesizing the control system to stabilize the TUV based on the real interpolation method (RIM) with the main contents: modeling the Towed cable (TC) - Underwater vehicle (UV) system, proposing the structure of the control system and the synthesis procedure of the regulators based on the RIM, building a synthesis program with different TC lengths. The simulation results show that the TUV exhibits good performance under the impact of sea wave. They can be applied to build the experimental models of TUV.
Tài liệu tham khảo
-
[1] Э.Я. Рапопорт, “Анализ и синтез систем автоматического управления с распределенными параметрами”, М. Высш. Шк, C. 292, (E.Y. Rapoport, “Analysis and synthesis of automatic control systems with distributed parameters”, M. Vyssh. School, pp. 292, 2005)
[2] Buckham, M. Nahon, M. Seto, X. Zhao, and C. Lambert, “Dynamics and control of a towed underwater vehicle system, part I: model development”, Ocean Engineering, Vol. 30, no. 4, pp. 453-470, 2003 https://doi.org/10.1016/S0029-8018(02)00029-X
[3] W. Kamman, and R.L. Huston “Multi-body dynamics modeling of variable length cable systems”, Multi-body System Dynamics, vol 5, pp. 211-221, 2001. https://doi.org/10.1023/A:1011489801339
[4] Yuan, L. Jin, W. Chi, and H. Tian “Finite difference method for solving the nonlinear dynamic equation of underwater towed system”, International Journal of Computational Methods, Vol. 11, No. 04, 2014. https://doi.org/10.1142/S0219876213500606
[5] I. Park, D.H. Jung, and W. Koterayama, “A numerical and experimental study on dynamics of a towed low tension cable”, Applied Ocean Research, Vol. 25, No. 05, pp. 289-299, 2003. https://doi.org/10.1016/j.apor.2004.02.003
[6] A. Eidsvik, and I. Schjølberg, “Time Domain Modeling of ROV Umbilical using Beam Equations”, IFAC-PapersOnLine, Vol. 49, no. 23, pp. 452-457, 2016. https://doi.org/10.1016/j.ifacol.2016.10.447
[7] Gerstmayr and A.A. Shabana “Analysis of thin beams and cables using the absolute nodal co-ordinate formulation”, Nonlinear Dynamics, Vol. 45, no. 1,2 pp. 109-130, 2006. https://link.springer.com/article/10.1007/s11071-006-s1856-1
[8] Gerstmayr, and H. Sugiyama, “Mikkola A. Review on the absolute nodal coordinate formulation for large defor-mation analysis of multi-body systems”, Journal of Computational and Nonlinear Dynamics, Vol. 8, No. 03, p. 031016, 2013. https://doi.org/10.1115/1.4023487
[9] Park and N. Kim, “Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable”, Int. J. Nav. Archit. Ocean Eng, Vol. 7, pp. 409-425, 2015. https://doi.org/10.1515/ijnaoe-2015-0029
[10] -B. Xu, B. Xin, and F. Ming, “Simulation and spectral estimation of sea wave based on shaping filter”, IEEE -The 6th International Forum on Strategic Technology (IFOST), Harbin, 2011, pp.1243-1246. http://dx.doi.org/10.1109/ifost.2011.6021245
[11] Martin, and B. David van de, “A generalized shaping filter method for higher order statistics”, Probabilistic Engineering Mechanics, Vol. 22, no. 4, pp. 313-319, 2007. https://doi.org/10.1016/j.probengmech.2007.03.002
[12] M. Shameem, and V. Anantha Subramanian, “Sea wave modelling for motion control applications”, Journal of Naval Architecture and Marine Engineering, Vol 1, No. 1, pp.29–38, 2014. https://doi.org/10.3329/jname.v11i1.17768
[13] Rasool, K. M. Muttaqi, and D. Sutanto, “Modelling Ocean Waves and an Investigation of Ocean Wave Spectra for the Wave-to-Wire Model of Energy Harvesting”, Engineering Proceedings, 2021. https://doi.org/10.3390/engproc2021012051
[14] Г.Е. Кувшинов, “Влияние морского ветрового волнения на глубоководный привязной объект”, Владивосток: Дальнаука, C. 215, 2008. (G.E. Kuvshinov, “The influence of sea waves on the towed underwater vehicle”, Vladivostok: Dalnauka, pp. 215, 2008).
[15] Г.Е. Кувшинов, and К.В. Чупина, “Передаточная функция вертикальной качки судна”, Материалы 7 Международной научно-практической конференции" Проблемы транспорта Дальнего Востока, 3-5 окт., 2007. - Владивосток: ДВО Рос. акад. трансп., 2007, C. 142-143. (G.E. Kuvshinov, and K.V. Chupina, “The vertical sway transfer function of the ship”, Proceedings of the 7th International Scientific and Practical Conference "Problems of Transport of the Far East, Vladivostok, October 3-5, 2007. Vladivostok: Far Eastern Branch of Russia. acad. transport., 2007. pp. 142-143).
[16] Г. Е. Кувшинов, “Моделирование продольной качки судна при воздействии нерегулярного морского волнения”, Проблемы транспорта Дальнего Востока, С. 14-16, (G. E. Kuvshinov, “Modeling the lurch of a ship under the influence of irregular sea waves”, Problems of transport of the Far East, pp. 14-16, 2009).
[17] Г.Е. Кувшинов, and Л.А. Наумов, “Системы управления глубиной погружения буксируемых объектов: Учебное пособие для вузов”, Владивосток: Дальнаука, C. 312, (G.E. Kuvshinov, and L.A. Naumov, “Control systems for the depth of towed underwater objects: Textbook for universities”, Vladivostok: Dalnauka, pp. 312, 2006).
[18] C. Teixeira, A. P. Aguiar, and A. Pascoal “Nonlinear adaptive control of an underwater towed vehicle”, Ocean Engineering, Vol. 37, pp. 1193-1220, 2010. https://www.researchgate.net/publication/241134697_nonlinear_control_of_an_underwater_towed_vehice
[19] Wu, X. Yang, S. Xu, and X. Han, “Numerical investigation on underwater towed system dynamics using a novel hydrodynamic model”, Ocean Engineering, Vol 247, 2022. https://doi.org/10.1016/j.oceaneng.2022.110632
[20] Yang, J. Wu, and S. Xu, “Dynamic analysis of underwater towed system under undulating motion mode of towed vehicle”, Applied Ocean Research, Vol. 121, 2022. https://doi.org/10.1016/j.apor.2022.103083
[21] G. Kim, S. J. Yun, and J. W. Park, “Estimation and Control of a Towed Underwater Vehicle with Active Stationary and Low-Speed Maneuvering Capabilities”, Journal of Marine Science and Engineering, Vol. 11, no. 6, pp. 1176, 2023. https://doi.org/10.3390/jmse11061176
[22] L. Dantas, J. J. Cruz, and E. A de Barros, “Study of autonomous underwater vehicle wave disturbance rejection in the diving plane”, Journal of Engineering for the Maritime Environment, Vol. 228, no.2, pp.122–135, 2014. https://doi.org/10.1177/1475090213501650
[23] L. Dantas, J. J. Cruz, and E. A. de Barros, “Longitudinal Control of Pirajuba Autonomous Underwater Vehicle, UsingTechniques of Robust Control LQG/LTR”, IFAC Proceedings Volumes, Vol. 43, No 20, 2010, pp. 108-113. https://doi.org/10.3182/20100915-3-DE-3008.00068
[24] В.И. Гончаров, “Синтез электромеханических исполнительных систем промышленных роботов”, Томск: Изд-во ТПУ, C. 100, (V.I. Goncharov, “Synthesis of electromechanical executive systems of industrial robots”, Tomsk: TPU Publishing House, pp. 100, 2002).
[25] Goncharov, I. Aleksandrov, and V. Rudnicki, “Real Interpolation Method for Automatic Control Problems Solution”, LAP Lambert Academic Publishing, pp. 300, 2014.
[26] M. A. Abutheraa, and D. Lester, “Computable function representations using effective Chebyshev polynomial”, World academy of science, Engineering and Technology, pp. 103-109, 2007.