Unveiling the antibacterial potential of nature-inspired material for designing food-related coatings
##plugins.themes.academic_pro.article.main##
Author
-
Yen DangThe University of Danang - Advanced Institute of Science and Technology, VietnamKhuong Ba DinhThe University of Danang - Advanced Institute of Science and Technology, Vietnam; Optical Sciences Centre, Swinburne University of Technology, AustraliaTien Thanh NguyenCollege of Medicine and Pharmacy, Tra Vinh University, VietnamThe Hy DuongThe University of Danang - University of Science and Technology, Vietnam
Từ khóa:
Tóm tắt
The escalating challenge of antibiotic resistance has driven the innovation of new antibacterial and antifouling materials. Recent developments focus on nature-inspired topographical engineering and nanostructured surfaces to combat resistant bacteria. This review discusses these advances, emphasizing the potential of nanoantibiotics and biopolymers. Nanoantibiotics revitalize drug effectiveness by encapsulating them in nanoparticles, presenting a new strategy to fight pathogens. Biopolymers, eco-friendly and biodegradable, emerge as a sustainable alternative, with applications in food safety and beyond. The exploration of these materials signifies a leap in design, fabrication, and the possibility of cost-effective, large-scale production, highlighting a promising avenue for commercial applications to tackle antibiotic resistance and biofouling effectively.
Tài liệu tham khảo
-
[1] Naghavi et al., “Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis”, Lancet Lond. Engl., vol. 399, no. 10325, pp. 629–655, 2022, doi: 10.1016/S0140-6736(21)02724-0.
[2] Laxminarayan, “The overlooked pandemic of antimicrobial resistance”, Lancet Lond. Engl., vol. 399, no. 10325, pp. 606–607, 2022, doi: 10.1016/S0140-6736(22)00087-3.
[3] Bowler, C. Murphy, and R. Wolcott, “Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship?”, Antimicrob. Resist. Infect. Control, vol. 9, no. 1, p. 162, 2020, doi: 10.1186/s13756-020-00830-6.
[4] Ciofu, C. Moser, P. Ø. Jensen, and N. Høiby, “Tolerance and resistance of microbial biofilms”, Nat. Rev. Microbiol., vol. 20, no. 10, pp. 621–635, 2022, doi: 10.1038/s41579-022-00682-4.
[5] Wu, B. Zhang, Y. Liu, X. Suo, and H. Li, “Influence of surface topography on bacterial adhesion: A review (Review)”, Biointerphases, vol. 13, no. 6, p. 060801, 2018, doi: 10.1116/1.5054057.
[6] -W. Hsiao, A. Venault, H.-S. Yang, and Y. Chang, “Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria”, Colloids Surf. B Biointerfaces, vol. 118, pp. 254–260, 2014, doi: 10.1016/j.colsurfb.2014.03.051.
[7] Chopra, K. Gulati, and S. Ivanovski, “Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants”, Acta Biomater., vol. 127, pp. 80–101, 2021, doi: 10.1016/j.actbio.2021.03.027.
[8] Borban, “DESIGNED SURFACE KILLS BACTERIA”, Chem. Eng. News Arch., vol. 79, no. 22, p. 13, 2001, doi: 10.1021/cen-v079n022.p013.
[9] Marguier et al., “Bacterial Colonization of Low-Wettable Surfaces is Driven by Culture Conditions and Topography”, Adv. Mater. Interfaces, vol. 7, no. 20, p. 2000179, 2020, doi: 10.1002/admi.202000179.
[10] M. Dunne, “Bacterial Adhesion: Seen Any Good Biofilms Lately?”, Clin. Microbiol. Rev., vol. 15, no. 2, pp. 155–166, 2002, doi: 10.1128/CMR.15.2.155-166.2002.
[11] Liu, H. Yao, X. Zhao, and C. Ge, “Biofilm Formation and Control of Foodborne Pathogenic Bacteria”, Molecules, vol. 28, no. 6, p. 2432, 2023, doi: 10.3390/molecules28062432.
[12] A. Olanbiwoninu and B. M. Popoola, “Biofilms and their impact on the food industry”, Saudi J. Biol. Sci., vol. 30, no. 2, p. 103523, 2023, doi: 10.1016/j.sjbs.2022.103523.
[13] Galié, C. García-Gutiérrez, E. M. Miguélez, C. J. Villar, and F. Lombó, “Biofilms in the Food Industry: Health Aspects and Control Methods”, Front. Microbiol., vol. 9, 2018, doi: 10.3389/fmicb.2018.00898.
[14] Kreve and A. C. D. Reis, “Bacterial adhesion to biomaterials: What regulates this attachment? A review”, Jpn. Dent. Sci. Rev., vol. 57, pp. 85–96, 2021, doi: 10.1016/j.jdsr.2021.05.003.
[15] P. Ivanova et al., “Natural Bactericidal Surfaces: Mechanical Rupture of Pseudomonas aeruginosa Cells by Cicada Wings”, Small, vol. 8, no. 16, pp. 2489–2494, 2012, doi: 10.1002/smll.201200528.
[16] Pogodin et al., “Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces”, Biophys. J., vol. 104, no. 4, pp. 835–840, 2013, doi: 10.1016/j.bpj.2012.12.046.
[17] M. Kelleher et al., “Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features”, ACS Appl. Mater. Interfaces, vol. 8, no. 24, pp. 14966–14974, 2016, doi: 10.1021/acsami.5b08309.
[18] P. Ivanova et al., “Bactericidal activity of black silicon”, Nat. Commun., vol. 4, no. 1, p. 2838, 2013, doi: 10.1038/ncomms3838.
[19] E. Mainwaring et al., “The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly”, Nanoscale, vol. 8, no. 12, pp. 6527–6534, 2016, doi: 10.1039/c5nr08542j.
[20] Valiei et al., “Hydrophilic Mechano-Bactericidal Nanopillars Require External Forces to Rapidly Kill Bacteria”, Nano Lett., vol. 20, no. 8, pp. 5720–5727, 2020, doi: 10.1021/acs.nanolett.0c01343.
[21] K. Truong, M. Al Kobaisi, K. Vasilev, D. Cozzolino, and J. Chapman, “Current perspectives for engineering antimicrobial nanostructured materials”, Curr. Opin. Biomed. Eng., vol. 23, p. 100399, 2022, doi: 10.1016/j.cobme.2022.100399.
[22] M. Mamun, A. J. Sorinolu, M. Munir, and E. P. Vejerano, “Nanoantibiotics: Functions and Properties at the Nanoscale to Combat Antibiotic Resistance”, Front. Chem., vol. 9, 2021, doi: 10.3389/fchem.2021.687660.
[23] Wu et al., “Recent advancement of bioinspired nanomaterials and their applications: A review”, Front. Bioeng. Biotechnol., vol. 10, 2022, doi: 10.3389/fbioe.2022.952523.
[24] D. Bixler and B. Bhushan, “Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects”, Soft Matter, vol. 8, no. 44, pp. 11271–11284, 2012, doi: 10.1039/C2SM26655E.
[25] Verplanck, Y. Coffinier, V. Thomy, and R. Boukherroub, “Wettability Switching Techniques on Superhydrophobic Surfaces”, Nanoscale Res. Lett., vol. 2, no. 12, p. 577, 2007, doi: 10.1007/s11671-007-9102-4.
[26] V. Oopath, A. Baji, and M. Abtahi, “Biomimetic Rose Petal Structures Obtained Using UV-Nanoimprint Lithography”, Polymers, vol. 14, no. 16, Art. no. 16, 2022, doi: 10.3390/polym14163303.
[27] Dundar Arisoy, K. W. Kolewe, B. Homyak, I. S. Kurtz, J. D. Schiffman, and J. J. Watkins, “Bioinspired Photocatalytic Shark-Skin Surfaces with Antibacterial and Antifouling Activity via Nanoimprint Lithography”, ACS Appl. Mater. Interfaces, vol. 10, no. 23, pp. 20055–20063, 2018, doi: 10.1021/acsami.8b05066.
[28] Sakamoto et al., “Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove”, FEMS Microbiol. Lett., vol. 361, no. 1, pp. 10–16, 2014, doi: 10.1111/1574-6968.12604.
[29] Krasowska and K. Sigler, “How microorganisms use hydrophobicity and what does this mean for human needs?”, Front. Cell. Infect. Microbiol., vol. 4, p. 112, 2014, doi: 10.3389/fcimb.2014.00112.
[30] Zheng et al., “Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion”, Front. Bioeng. Biotechnol., vol. 9, 2021, doi: 10.3389/fbioe.2021.643722.
[31] Chan, X. H. Wu, B. W. Chieng, N. A. Ibrahim, and Y. Y. Then, “Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections”, Nanomaterials, vol. 11, no. 4, p. 1046, 2021, doi: 10.3390/nano11041046.
[32] Yan, Y. Li, Y. Liu, N. Li, X. Zhang, and C. Yan, “Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections”, Molecules, vol. 26, no. 23, p. 7136, 2021, doi: 10.3390/molecules26237136.
[33] -L. Ke, F.-S. Deng, C.-Y. Chuang, and C.-H. Lin, “Antimicrobial Actions and Applications of Chitosan”, Polymers, vol. 13, no. 6, p. 904, 2021, doi: 10.3390/polym13060904.
[34] N. Ayrapetyan et al., “Antibacterial Properties of Fucoidans from the Brown Algae Fucus vesiculosus L. of the Barents Sea”, Biology, vol. 10, no. 1, p. 67, 2021, doi: 10.3390/biology10010067.
[35] Li et al., “Fucoidan-loaded, neutrophil membrane-coated nanoparticles facilitate MRSA-accompanied wound healing”, Mater. Des., vol. 227, p. 111758, 2023, doi: 10.1016/j.matdes.2023.111758.
[36] A. Muñoz-Bonilla, C. Echeverria, Á. Sonseca, M. P. Arrieta, and M. Fernández-García, “Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development”, Mater. Basel Switz., vol. 12, no. 4, p. 641, 2019, doi: 10.3390/ma12040641.