Tổng hợp xanh nano bạc sử dụng cao chiết lá vối và đánh giá hoạt tính kháng vi khuẩn tụ cầu vàng Staphylococcus aureus
##plugins.themes.academic_pro.article.main##
Author
-
Ngô Thái Bích VânTrường Đại học Bách khoa - Đại học Đà Nẵng, Việt NamPhan Thế AnhTrường Đại học Bách khoa - Đại học Đà Nẵng, Việt Nam
Từ khóa:
Tóm tắt
Trong nghiên cứu này, nhóm tác giả thực hiện tổng hợp các hạt nano bạc từ tiền chất dung dịch AgNO3 sử dụng cao chiết từ lá Vối làm tác nhân khử. Đồng thời, hệ nhũ tương gồm cao phân ethyl acetate của lá Vối và dung dịch muối bạc cũng được thử nghiệm trong phản ứng tạo hạt nano. Sự hình thành các hạt nano bạc được quan sát bằng kính hiển vi điện tử quét (SEM), đo phổ nhiễu xạ tia X (XRD) và thế Zeta. Các kết quả phân tích cho thấy, hạt nano bạc tổng hợp có kích thước khoảng 20-70 nm. Đồng thời, các hạt nano bạc này có khả năng ức chế vi khuẩn tụ cầu vàng Staphylococcus aureus với giá trị nồng độ ức chế tối thiểu (MIC) là 2,39 – 4,78 µg/ml. Kết quả nghiên cứu cho thấy, tiềm năng ứng dụng của công nghệ nano xanh trong lĩnh vực điều trị bệnh nhiễm khuẩn.
Tài liệu tham khảo
-
[1] Fang et al., “Green synthesis of nano silver by tea extract with high antimicrobial activity”, Inorganic Chemistry Communications, vol. 132, p. 108808, 2021, doi: 10.1016/j.inoche.2021.108808.
[2] D. Thuan, N. V. Cuong, L. T. T. Hong, T. T. Thao, N. T. N. Quynh, and C. V. Du, “Green synthesis of silver nanoparticles using herbal extract (Piper betle, Muntingia Calabura)”, Jounal of Science of Lac Hong University, vol. 49, no. 01, pp. 79–84, 2021, doi: 10.46242/jstiuh.v49i01.1644.
[3] Liaqat, N. Jahan, K. Rahman, T. Anwar, and H. Qureshi, “Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay”, Frontiers in Chemistry., vol. 10, pp. 1–13, 2022, doi: 10.3389/fchem.2022.952006.
[4] V. Q. Bao, L. T. K. Anh, and N. T. P. Nga, “Synthesis of silver nanoparticles using extracts from fresh turmeric (Curcuma Longa L.) and its antibacterial activity against Vibrio Parahaemolyticus”, HUAF Journal of Agricultural Science & Technology, vol. 6, no. 2, pp. 3050–3057, 2022, doi: 10.46826/huaf-jasat.v6n2y2022.952.
[5] K. Keshari, R. Srivastava, P. Singh, V. B. Yadav, and G. Nath, “Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum”, Journal of Ayurveda and Integrative Medicine, vol. 11, no. 1, pp. 37–44, 2018, doi: 10.1016/j.jaim.2017.11.003.
[6] N. M. An, “Green synthesis of silver nanoparticles from Houttuynia cordata leaves extract and AgNO3”, VNU Journal of Science: Natural Sciences and Technology, vol. 32, pp. 188–192, 2016.
[7] N. Tuan, B. H. Minh, P. T. Tran, and J. H. Lee, “The Effects of 2’,4’-Dihydroxy-6’-methoxy-3’,5’- dimethylchalcone from Cleistocalyx operculatus Buds on Human Pancreatic Cancer Cell Lines”, Molecules, vol. 24, no. 2538, pp. 1–11, 2019.
[8] L. Tran et al., “Protective effects of extract of Cleistocalyx operculatus flower buds and its isolated major constituent against LPS-induced endotoxic shock by activating the Nrf2/HO-1 pathway”, Food Chem. Toxicol., vol. 129, no. December 2018, pp. 125–137, 2019, doi: 10.1016/j.fct.2019.04.035.
[9] T. Dao et al., “C-methylated flavonoids from cleistocalyx operculatus and their inhibitory effects on novel influenza a (H1N1) neuraminidase”, J. Nat. Prod., vol. 73, no. 10, pp. 1636–1642, 2010, doi: 10.1021/np1002753.
[10] T. B. Van, P. T. T. Anh, and T. T. T. Hien, “To investigate antimicrobial activity of crude extract of cleistocalyxoperculatus leaves and initially make souble powder”, The University of Danang - Journal of Science and Technology., vol 19, no. 5, pp. 44–47, 2021.
[11] T. B. Van, D. T. T Thao, H. T. Trung, and P. T. V. Phu, “Invitro antibacterial activity of the fractions from Cleistocalyx operculatus (Roxb.) Merr. et Perry against Staphylococcus aureus”, The University of Danang - Journal of Science and Technology, vol. 21, No. 6.1. pp. 56-60, 2023.
[12] T. B. Van et al., “In vitro antibacterial activity of Ampelopsis cantoniensis extracts cultivated at Danang against clinically isolated Staphylococcus aureus”, TNU Journal of Science and Technology, vol. 227, no. 10, pp. 235–242, 2022.
[13] Gudikandula and S. C. Maringanti, “Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties”, Journal of Experimental Nanoscience., vol. 11, no. 9, pp. 714–721, 2016, doi: 10.1080/17458080.2016.1139196.
[14] S. Balu, C. Bhakat, and S. Harke, “Synthesis of silver nanoparticles by chemical reduction method and their antimicrobial activity”, International Journal of Engineering Research & Technology vol. 4, no. 10, pp. 111–113, 2013, doi: 10.7897/2230-8407.041024.
[15] Matuschek, D. F. J. Brown, and G. Kahlmeter, “Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories”, Clinical Microbiology and Infection, vol. 20, no. 4, pp. O255–O266, 2014, doi: 10.1111/1469-0691.12373.
[16] P. Panpaliya et al., “In vitro evaluation of antimicrobial property of silver nanoparticles and chlorhexidine against five different oral pathogenic bacteria”, Saudi Dental Journal., vol. 31, no. 1, pp. 76–83, 2019, doi: 10.1016/j.sdentj.2018.10.004.
[17] N. Pham, T. Thanh, T. Nguyen, and H. Nguyen-ngoc, “Ethnopharmacology, Phytochemistry, and Pharmacology of Syzygium nervosum”, Evidence-Based Complementary and Alternative Medicine vol. 2020, 2020, doi.org/10.1155/2020/8263670
[18] Gao, H. Yang, and C. Wang, “Controllable preparation and mechanism of nano-silver mediated by the microemulsion system of the clove oil”, Results in Physics., vol. 7, pp. 3130–3136, 2017, doi: 10.1016/j.rinp.2017.08.032.
[19] R. Allafchian, S. Z. Mirahmadi-Zare, S. A. H. Jalali, S. S. Hashemi, and M. R. Vahabi, “Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity”, Journal of Nanostructure in Chemistry., vol. 6, no. 2, pp. 129–135, 2016, doi: 10.1007/s40097-016-0187-0.
[20] Sathyavathi, M. B. Krishna, S. V. Rao, R. Saritha, and D. Narayana Rao, “Biosynthesis of silver Nanoparticles using Coriandrum Sativum leaf extract and their application in nonlinear optics”, Advanced Science Letters, vol. 3, no. 2, pp. 138–143, 2010, doi: 10.1166/asl.2010.1099.
[21] D. Rivera-Rangel, M. P. González-Muñoz, M. Avila-Rodriguez, T. A. Razo-Lazcano, and C. Solans, “Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent”, Colloids and Surfaces A vol. 536, no. July 2017, pp. 60–67, 2018, doi: 10.1016/j.colsurfa.2017.07.051.
[22] H. Teh, W. A. Nazni, A. H. Nurulhusna, A. Norazah, and H. L. Lee, “Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay”, BMC Microbiology, vol. 17, no. 1, pp. 1–8, 2017, doi: 10.1186/s12866-017-0936-3.
[23] A. Asghar, E. Zahir, M. A. Asghar, J. Iqbal, and A. A. Rehman, “Facile, one-pot biosynthesis and characterization of iron, copper and silver nanoparticles using Syzygium cumini leaf extract: As an effective antimicrobial and aflatoxin B1 adsorption agents”, PLoS One, vol. 15, no. 7, pp. 1–17, 2020, doi: 10.1371/journal.pone.0234964.
[24] N. T. Dung, J. M. Kim, and S. C. Kang, “Chemical composition, antimicrobial and antioxidant activities of the essential oil and the ethanol extract of Cleistocalyx operculatus (Roxb.) Merr and Perry buds”, Food and Chemical Toxicology, vol. 46, no. 12, pp. 3632–3639, 2008, doi: 10.1016/j.fct.2008.09.013.