Backscatter-based UAV-enabled mobile edge computing IoT network: design and analysis
##plugins.themes.academic_pro.article.main##
Author
-
Dac-Binh HaDuy Tan University, Da Nang, VietnamTruongDuy Tan University, Da Nang, VietnamTien-Vu TruongDuy Tan University, Da Nang, VietnamNguyen-Son VoInstitute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, VietnamVan Nhan VoDuy Tan University, Da Nang, Vietnam
Từ khóa:
Tóm tắt
In the 6G mobile networks, ensuring low latency and low energy consumption is paramount. This study explores a novel approach for addressing these issues in a backscatter communication (BC) - based multiple user unmanned aerial vehicle (UAV) - enabled mobile edge computing (MEC) Internet of Things (IoT) network. Our proposed framework incorporates a partial offloading strategy, a time division multiple access (TDMA) scheme, and a radio frequency energy harvesting mechanism. We use the channel gains statistical characteristics to derive approximate closed-form expressions for the successful computation and energy outage probabilities. Using these benchmarks, we investigate the impact of critical parameters such as transmit power, number of sensor nodes, task division ratio, the altitude of the UAV, and threshold tolerance. We validate our analysis through computer simulations and provide results to support our findings. The study reveals that selecting an optimal UAV altitude can significantly improve latency and energy consumption performance.
Tài liệu tham khảo
-
[1] T Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective”, IEEE Commun. Surv. Tut, vol. 19, no. 4, pp. 2322–2358, 2017.
[2] -X. Wang et al., “On the road to 6G: Visions, requirements, key technologies, and testbeds”, IEEE Commun. Surv. Tut., vol. 25, no. 2, pp. 905–974, 2023.
[3] Shi, Y. Ye, X. Chu, S. Sun, and G. Lu, “Energy-efficient resource allocation for backscatter-assisted wireless powered mec”, IEEE Trans. Veh. Technol., vol. 72, no. 7, pp. 9591-9596, 2023.
[4] Liu, S. Sun, X. Yuan, and Y. Zhang, “Ambient backscatter communication-based smart 5G IoT network”, EURASIP J. Wireless Commun. Netw., vol. 2021, no. 1, pp. 1–19, 2021.
[5] Wu, X. Wang, A. Hawbani, L. Yuan, and W. Gong, “A survey on ambient backscatter communications: Principles, systems, applications, and challenges”, Comput. Netw., vol. 216, 2022.
[6] Dogra, R. K. Jha, and S. Jain, “A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies”, IEEE Access, vol. 9, pp. 67512–67547, 2021.
[7] Liu et al., “Outage probability analysis for uav-aided mobile edge computing networks”, EAI Endorsed Trans. Ind. Netw. Intell. Sys., vol. 9, no. 31, e4, 2022.
[8] Masaracchia et al., “UAV-enabled ultra-reliable lowlatency communications for 6G: A comprehensive survey”, IEEE Access, vol. 9, pp. 137338–137352, 2021.
[9] H. H. Raza, D. Zorbas, and B. O’Flynn, “A comprehensive survey on RF energy harvesting: Applications and performance determinants”, Sensors, vol. 22, no. 8, pp. 2990, 2022.
[10] Gong, Y. Xie, J. Xu, D. Niyato, and Y. C. Liang, “Deep reinforcement learning for backscatter-aided data offloading in mobile edge computing”, IEEE Net., vol. 34, no. 5, pp. 106–113, 2020.
[11] Abrar, U. Ajmal, Z. M. Almohaimeed, X. Gui, R. Akram, and R. Masroor, “Energy efficient UAV-enabled mobile edge computing for IoT devices: A review”, IEEE Access, vol. 9, pp. 127779–127798, 2021.
[12] Shi, Y. Ye, X. Chu, and G. Lu, “Computation bits maximization in a backscatter assisted wirelessly powered mec network”, IEEE Commun. Lett., vol. 25, no. 2, pp. 528–532, 2021.
[13] Zheng and W. Zhou, “Computation bits maximization in backscatterassisted wireless-powered NOMA-MEC networks”, EURASIP J. Wireless Commun. Netw., vol. 23, no.1, 2022.
[14] Zargari, C. Tellambura, and S. Herath, “Energy-efficient hybrid offloading for backscatter-assisted wirelessly powered MEC with reconfigurable intelligent surfaces”, IEEE Trans. Mobile Comput., vol. 22, no. 9, pp. 5262–5279, 2023.
[15] Bin and Y. Rongrong, “Computing task offloading and resource allocation in UAV-enabled backscatter communications”, J. Electro. Inf. Technol., vol. 45, no. 7, pp. 2334–2341, 2023.
[16] Li, W. Liu, W. Xie, and X. Li, “Energy-efficient task offloading and trajectory planning in UAV-enabled mobile edge computing networks”, Comput. Netw., vol. 234, 2023.
[17] Hoang, Q. N. Van, L. Dung, B. Nguyen, N. Van Vinh, and T. Kim, “Performance analysis and optimization of multi-antenna UAV-aided multi-user backscatter SPC systems”, IEEE Trans. Intell. Veh., vol. 9, pp. 1028–1039, 2024.
[18] T. Tran, L. T. T. Huyen, B. C. Nguyen, H. M. Nguyen, and T. M. Hoang, “UAV-assisted finite block-length backscatter: Performance analysis and optimization”, Ad Hoc Networks, vol. 153, pp.103352, 2024.
[19] A. Mohammad, Z. S. A. Raza, M. D. C., D. R. Marco, and G. Mounir, “Performance analysis of UAV enabled disaster recovery networks: A stochastic geometric framework based on cluster processes”, IEEE Access, vol. 6, pp. 26215–26230, 2018.
[20] S. Nguyen and T. H. Nguyen, “Energy outage analysis of aerial UAVenabled SWIPT deployments”, IEEE Access, vol. 12, pp. 27147–27157, 2024.
[21] -N. Nguyen, D.-B. Ha, V.-T. Truong, D.-T. Do, and C. So-In, “Secrecy performance analysis and optimization for UAV-relay-enabled WPT and cooperative NOMA MEC in IoT networks”, IEEE Access, vol. 11, pp. 127800–127816, 2022.
[22] Liu, Y. Huang, H. Hu, J. Si, G. Cheng, T. Huang, and X. Hu, “Resource and trajectory optimization for secure communication in RIS assisted UAV-MEC system”, IET Commun., vol. 17, no. 18, pp. 2041–2139, 2023.
[23] Ye, G. Lu, R. Q. Hu, and L. Shi, “On the performance and optimization for mec networks using uplink noma”, in IEEE Int. Conf. Commun. Works. (ICC Workshops), Shanghai, China, IEEE, 2019.
[24] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products. Elsevier Academic Press, 2007.