Ứng dụng hệ thống mạng nơ ron thích nghi mờ để dự đoán độ nhám bề mặt khi tiện thép AISI 304




##plugins.themes.academic_pro.article.main##
Author
-
Trần Công ChiTrường Đại học Lâm nghiệp, Việt Nam
Từ khóa:
Tóm tắt
Nghiên cứu này xem xét ảnh hưởng của ba thông số khi tiện là chiều sâu cắt (t), lượng chạy dao (f) và tốc độ cắt (n) đối với độ nhám bề mặt (Ra), đồng thời phát triển một mô hình dự báo khi gia công thép AISI 304 bằng hệ thống mạng nơ ron thích nghi mờ (ANFIS). Kết quả phân tích ANOVA cho thấy, cả ba thông số cắt đều có tác động đáng kể đến Ra, trong đó tham số f có ảnh hưởng mạnh nhất, nhấn mạnh vai trò của nó trong việc kiểm soát độ nhám bề mặt. Mô hình dự đoán ANFIS được phát triển thông qua hai phương pháp đào tạo Hybrid và Backpropagation tương ứng với tám hàm thuộc khác nhau. Kết quả cho thấy, mô hình đào tạo Hybrid sử dụng hàm thuộc Gaussmf đạt hệ số xác định R² cao nhất là 0,986081 và căn bậc hai của sai số bình phương trung bình (RMSE) thấp nhất là 0,013055. Những kết quả này chứng minh rằng, mô hình ANFIS có khả năng dự đoán Ra một cách tương đối chính xác dựa trên các thông số gia công.
Tài liệu tham khảo
-
[1] H. Tran, X. T. Tran, and T. L. Nguyen, "Research on samples’ surface roughness of turning lathes when spindle driven by a hydraulic motor”, The University of Danang - Journal of Science and Technology, vol. 11, no. 120, pp. 22-25, 2017.
[2] Misaka et al., "Prediction of surface roughness in CNC turning by model-assisted response surface method”, Precision Engineering, vol. 62, pp. 196-203, 2020.
[3] M. Zain, H. Haron, and S. Sharif, "Prediction of surface roughness in the end milling machining using Artificial Neural Network”, Expert Systems with Applications, vol. 37, no. 2, pp. 1755-1768, 2010.
[4] Wang, T. Chen, and D. Kong, "Knowledge-based neural network for surface roughness prediction of ball-end milling”, Mechanical Systems and Signal Processing, vol. 194, p. 110282, 2023.
[5] Yeganefar, S. A. Niknam, and R. Asadi, "The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling”, The International Journal of Advanced Manufacturing Technology, vol. 105, pp. 951-965, 2019.
[6] Wu and K. Lei, "Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network”, The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 305-314, 2019.
[7] A. Rizvi and W. Ali, "An artificial neural network approach to prediction of surface roughness and material removal rate in CNC turning of C40 steel”, International Journal of Industrial Engineering & Production Research, vol. 32, no. 3, pp. 1-10, 2021.
[8] R. Phate and S. B. Toney, "Modeling and prediction of WEDM performance parameters for Al/SiCp MMC using dimensional analysis and artificial neural network”, Engineering Science and Technology, an International Journal, vol. 22, no. 2, pp. 468-476, 2019.
[9] Ficko, D. Begic-Hajdarevic, M. Cohodar Husic, L. Berus, A. Cekic, and S. Klancnik, "Prediction of surface roughness of an abrasive water jet cut using an artificial neural network”, Materials, vol. 14, no. 11, p. 3108, 2021.
[10] C. Tran, V. T. Nguyen, and C. L. Tran, "Prediction Model and Optimization of Machining Parameters Using Integrated ANN-GA Method on CNCMilling Machine”, (in Vietnam), TNU Journal of Science and Technology, vol. 226, no. 11, pp. 20-29, 2021.
[11] C. Tran, "Modelling and Optimization of Surface Roughness and Material Removal Rate in Milling SKD11 Using GMDH and NSGA-II”, International Journal of Mechanical Engineering and Robotics Research, vol. 13, no. 6, pp. 618-627, 2024.
[12] Kannadasan, D. R. Edla, M. H. Yadav, and A. Bablani, "Intelligent-ANFIS model for predicting measurement of surface roughness and geometric tolerances in three-axis CNC milling”, IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 10, pp. 7683-7694, 2020.
[13] S. Stephen and P. Sethuramalingam, "ANFIS prediction modeling of surface roughness and cutting force of titanium alloy ground with carbon nanotube grinding wheel”, Multiscale and Multidisciplinary Modeling, Experiments and Design, vol. 7, pp. 3285-3300, 2024.
[14] S. Alajmi and A. M. Almeshal, "Prediction and optimization of surface roughness in a turning process using the ANFIS-QPSO method”, Materials, vol. 13, no. 13, p. 2986, 2020.
[15] Natarajan, S. Palani, and B. Anandampilai, "Prediction of surface roughness in milling by machine vision using ANFIS”, Computer-Aided Design and Applications, vol. 9, no. 3, pp. 269-288, 2012.
[16] Kumar and N. R. J. Hynes, "Prediction and optimization of surface roughness in thermal drilling using integrated ANFIS and GA approach”, Engineering Science and Technology, an International Journal, vol. 23, no. 1, pp. 30-41, 2020.
[17] Chaudhary, A. N. Siddiquee, and A. K. Chanda, "Effect of wire tension on different output responses during wire electric discharge machining on AISI 304 stainless steel”, Defence Technology, vol. 15, no. 4, pp. 541-544, 2019.
[18] Sarıkaya and V. Yılmaz, "Optimization and predictive modeling using S/N, RSM, RA and ANNs for micro-electrical discharge drilling of AISI 304 stainless steel”, Neural Computing and Applications, vol. 30, pp. 1503-1517, 2018.
[19] Akasawa, H. Sakurai, M. Nakamura, T. Tanaka, and K. Takano, "Effects of free-cutting additives on the machinability of austenitic stainless steels”, Journal of Materials Processing Technology, vol. 143, pp. 66-71, 2003.
[20] C. Tran, T. T. Nguyen, and V. T. Nguyen, "Multi-Objective Optimization in Turning AISI 304 Stainless Steel: An Integration of The Taguchi Method, Response Surface Methodology, and NSGA-II”, International Journal of Industrial and Systems Engineering, vol. 1, no. 1, 2025.
[21] Takagi and M. Sugeno, "Derivation of fuzzy control rules from human operator's control actions”, IFAC proceedings volumes, vol. 16, no. 13, pp. 55-60, 1983.
[22] C. Tran and V. T. Nguyen, "Surface roughness prediction for CNC-turned C45 steel utilising adaptive neuro-fuzzy inference systems”, Journal of Mechanical Engineering and Sciences, vol. 18, no. 4, pp. 10222-10232, 2024.
[23] Senthilkumar, J. Sudha, and V. Muthukumar, "A grey-fuzzy approach for optimizing machining parameters and the approach angle in turning AISI 1045 steel”, Advances in Production Engineering & Management, vol. 10, no. 4, pp. 195-208, 2015.
[24] Zhang, B. E. Patuwo, and M. Y. Hu, "Forecasting with artificial neural networks: The state of the art”, International journal of forecasting, vol. 14, no. 1, pp. 35-62, 1998.