Evaluation of Cr(VI) adsorption capacity in aqueous solution using material recovered from steel slag




##plugins.themes.academic_pro.article.main##
Author
-
Hoang Le PhuongThai Nguyen University of Technology, Thai Nguyen City, Vietnam
Từ khóa:
Tóm tắt
Steel slag (SS), an industrial by-product, has been investigated as a cost-effective adsorbent for removing hexavalent chromium Cr(VI) from aqueous solutions. Unlike previous studies that primarily focused on conventional adsorbents, this research systematically investigates the adsorption behavior of SS, emphasizing its kinetic and isotherm characteristics. Batch experiments revealed that Cr(VI) adsorption reached equilibrium within 150 minutes under acidic conditions, with optimal performance at pH 3. Adsorption kinetics followed the pseudo-second-order model (R²=0.985), indicating chemisorption dominance. The Langmuir isotherm provided the best fit (R²=0.986), with a maximum adsorption capacity of 13.32 mg/g at an initial Cr(VI) concentration of 20 mg/L, suggesting monolayer adsorption on uniform sites. This study provides novel insights by demonstrating the effectiveness of SS as an alternative low-cost adsorbent that has not yet received specific attention in Vietnam. These findings confirm the feasibility of SS for Cr(VI) removal, contributing to environmentally friendly water treatment solutions.
Tài liệu tham khảo
-
[1] C. Lin, W. Luo, T. Luo, Q. Zhou, H. Li, and L. Jing, “A study on adsorption of Cr (VI) by modified rice straw: Characteristics, performances and mechanism”, J. Clean. Prod., vol. 196, no. Vi, pp. 626–634, 2018, doi: 10.1016/j.jclepro.2018.05.279.
[2] WHO, “Chromium in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality”, 1996.
[3] Y. Wang, C. Peng, E. Padilla-Ortega, A. Robledo-Cabrera, and A. López-Valdivieso, “Cr(VI) adsorption on activated carbon: Mechanisms, modeling and limitations in water treatment”, J. Environ. Chem. Eng., vol. 8, no. 4, 2020, doi: 10.1016/j.jece.2020.104031.
[4] Y. Fei and Y. H. Hu, “Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review”, J. Mater. Chem. A, vol. 10, no. 3, pp. 1047–1085, 2022, doi: 10.1039/D1TA06612A.
[5] A. Mohammadi, A. Ataie, and S. Sheibani, “Chromium (VI) Ions Adsorption Onto Barium Hexaferrite Magnetic Nano-adsorbent”, Adv. Mater. Lett., vol. 7, no. 7, pp. 579–586, 2016, doi: 10.5185/amlett.2016.6394.
[6] K. S. Padmavathy, G. Madhu, and P. V. Haseena, “A study on Effects of pH, Adsorbent Dosage, Time, Initial Concentration and Adsorption Isotherm Study for the Removal of Hexavalent Chromium (Cr(VI)) from Wastewater by Magnetite Nanoparticles”, Procedia Technol., vol. 24, pp. 585–594, 2016, doi: https://doi.org/10.1016/j.protcy.2016.05.127.
[7] H. Wang et al., “Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr(VI) removal”, Chem. Eng. J., vol. 262, pp. 597–606, 2015, doi: https://doi.org/10.1016/j.cej.2014.10.020.
[8] D. K. Grgić, “Batch Adsorption of Cr(VI) Ions on Zeolite and Agroindustrial Waste”, Chem. Biochem. Eng. Q., vol. 31, pp. 497–507, Jan. 2018, doi: 10.15255/CABEQ.2017.1100.
[9] A. Tytłak, P. Oleszczuk, and R. Dobrowolski, “Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions”, Environ. Sci. Pollut. Res., vol. 22, no. 8, pp. 5985–5994, 2015, doi: 10.1007/s11356-014-3752-4.
[10] H. Wang, W. Wang, S. Zhou, and X. Gao, “Adsorption mechanism of Cr(VI) on woody-activated carbons”, Heliyon, vol. 9, no. 2, p. e13267, 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e13267.
[11] T. C. Nguyen, P. Loganathan, T. V. Nguyen, J. Kandasamy, R. Naidu, and S. Vigneswaran, “Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash”, Environ. Sci. Pollut. Res. Int., vol. 25, no. 21, pp. 20430–20438, Jul. 2018, doi: 10.1007/s11356-017-9610-4.
[12] V. K. Gupta and S. Sharma, “Removal of Cadmium and Zinc from Aqueous Solutions Using Red Mud”, Environ. Sci. Technol., vol. 36, no. 16, pp. 3612–3617, Aug. 2002, doi: 10.1021/es020010v.
[13] Pranoto, A. Masykur, and Y. A. Nugroho, “Adsorption Effectivity Test of Andisols Clay-Zeolite (ACZ) Composite as Chromium Hexavalent (Cr(VI)) Ion Adsorbent”, IOP Conf. Ser. Mater. Sci. Eng., vol. 333, no. 1, p. 12057, 2018, doi: 10.1088/1757-899X/333/1/012057.
[14] J. Liu, X. Wu, Y. Hu, C. Dai, Q. Peng, and D. Liang, “Effects of Cu(II) on the Adsorption Behaviors of Cr(III) and Cr(VI) onto Kaolin”, J. Chem., vol. 2016, 2016, doi: 10.1155/2016/3069754.
[15] J. Qiu, Y. Zhao, J. Xing, and X. Sun, “Fly ash-based geopolymer as a potential adsorbent for Cr(VI) removal”, Desalin. Water Treat., vol. 70, pp. 201–209, 2017, doi: https://doi.org/10.5004/dwt.2017.20493.
[16] N. Sheraz, A. Shah, A. Haleem, and F. J. Iftikhar, “Comprehensive assessment of carbon-, biomaterial- and inorganic-based adsorbents for the removal of the most hazardous heavy metal ions from wastewater”, RSC Adv., vol. 14, no. 16, pp. 11284–11310, 2024.
[17] V. Liem-Nguyen, V. Sjöberg, N. P. Dinh, D. H. Huy, and S. Karlsson, “Removal mechanism of arsenic (V) by stainless steel slags obtained from scrap metal recycling”, J. Environ. Chem. Eng., vol. 8, no. 4, p. 103833, 2020, doi: 10.1016/j.jece.2020.103833.
[18] L. H. Nguyen et al., “Steel slag quality control for road construction aggregates and its environmental impact: case study of Vietnamese steel industry - leaching of heavy metals from steel-making slag”, Environ. Sci. Pollut. Res., vol. 29, no. 28, pp. 41983–41991, 2022, doi: 10.1007/s11356-021-16438-1.
[19] L. Yang et al., “The stability of the compounds formed in the process of removal Pb(II), Cu(II) and Cd(II) by steelmaking slag in an acidic aqueous solution”, J. Environ. Manage., vol. 231, pp. 41–48, 2019, doi: 10.1016/j.jenvman.2018.10.028.
[20] T. M. Vu et al., “High removal efficiency of ammonium from aqueous solution by colloidal silver nanoparticles: batch adsorption”, Urban Water J., vol. 21, no. 3, pp. 323–336, 2024, doi: 10.1080/1573062X.2023.2290614.
[21] H. L. Phuong et al., “Removal of Cr(VI) from aqueous solution using magnetic modified biochar derived from raw corncob”, New J. Chem., vol. 43, no. 47, pp. 18663–18672, 2019, doi: 10.1039/C9NJ02661D.
[22] W. Hunnicutt, “Characterization of calcium-silicate-hydrate and calcium-alumino-silicate-hydrate”, University of Illinois at Urbana-Champaign, 2013.
[23] N. Shao, S. Li, F. Yan, Y. Su, F. Liu, and Z. Zhang, “An all-in-one strategy for the adsorption of heavy metal ions and photodegradation of organic pollutants using steel slag-derived calcium silicate hydrate”, J. Hazard. Mater., vol. 382, p. 121120, 2020, doi: 10.1016/j.jhazmat.2019.121120.
[24] I. Z. Yildirim and Monica Prezzi, “Steel Slag: Chemistry, Mineralogy, and Morphology”, pp. 2816–2825, 2015.
[25] L. S. Rocha et al., “Producing Magnetic Nanocomposites from Paper Sludge for the Adsorptive Removal of Pharmaceuticals from Water-A Fractional Factorial Design”, Nanomaterials, vol. 11, pp. 1–20, Jan. 2021, doi: 10.3390/nano11020287.
[26] R. F. Zuo, G. X. Du, W. G. Yang, L. B. Liao, and Z. Li, “Mineralogical and chemical characteristics of a powder and purified quartz from Yunnan Province”, Open Geosci., vol. 8, no. 1, pp. 606–611, 2016, doi: 10.1515/geo-2016-0055.
[27] R. Wahab, F. Khan, and A. A. Al-Khedhairy, “Hematite iron oxide nanoparticles: apoptosis of myoblast cancer cells and their arithmetical assessment”, RSC Adv., vol. 8, no. 44, pp. 24750–24759, 2018, doi: 10.1039/C8RA02613K.
[28] C. Navarro, M. Díaz, and M. A. Villa-García, “Physico-chemical characterization of steel slag. study of its behavior under simulated environmental conditions”, Environ. Sci. Technol., vol. 44, no. 14, pp. 5383–5388, 2010, doi: 10.1021/es100690b.
[29] N. Shao et al., “Hierarchically Structured Calcium Silicate Hydrate-Based Nanocomposites Derived from Steel Slag for Highly Efficient Heavy Metal Removal from Wastewater”, ACS Sustain. Chem. Eng., vol. 6, no. 11, pp. 14926–14935, 2018, doi: 10.1021/acssuschemeng.8b03428.
[30] S. Wang, X. Peng, L. Tang, L. Zeng, and C. Lan, “Influence of inorganic admixtures on the 11 Å-tobermorite formation prepared from steel slags: XRD and FTIR analysis”, Constr. Build. Mater., vol. 60, pp. 42–47, 2014, doi: 10.1016/j.conbuildmat.2014.03.002.
[31] Y. L. Lee, W. H. Wang, F. H. Lin, and C. P. Lin, “Hydration behaviors of calcium silicate-based biomaterials”, J. Formos. Med. Assoc., vol. 116, no. 6, pp. 424–431, 2017, doi: 10.1016/j.jfma.2016.07.009.
[32] M. S. Tizo et al., “Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution”, Sustain. Environ. Res., vol. 28, no. 6, pp. 326–332, 2018, doi: https://doi.org/10.1016/j.serj.2018.09.002.
[33] G. K. Gupta, M. Ram, R. Bala, M. Kapur, and M. K. Mondal, “Pyrolysis of chemically treated corncob for biochar production and its application in Cr(VI) removal”, Environ. Prog. Sustain. Energy, vol. 37, no. 5, pp. 1606–1617, 2018, doi: 10.1002/ep.12838.
[34] J. Shang, J. Pi, M. Zong, Y. Wang, W. Li, and Q. Liao, “Chromium removal using magnetic biochar derived from herb-residue”, J. Taiwan Inst. Chem. Eng., vol. 68, pp. 289–294, 2016, doi: https://doi.org/10.1016/j.jtice.2016.09.012.
[35] M. Akram, H. N. Bhatti, M. Iqbal, S. Noreen, and S. Sadaf, “Biocomposite efficiency for Cr(VI) adsorption: Kinetic, equilibrium and thermodynamics studies”, J. Environ. Chem. Eng., vol. 5, no. 1, pp. 400–411, 2017, doi: https://doi.org/10.1016/j.jece.2016.12.002.
[36] H. L. Phuong et al., “Cr(VI) Removal from Aqueous Solution Using a Magnetite Snail Shell”, Water, Air, Soil Pollut., vol. 231, no. 1, p. 28, 2020, doi: 10.1007/s11270-020-4406-4.
[37] Y. Yang, N. Chen, C. Feng, M. Li, and Y. Gao, “Chromium removal using a magnetic corncob biochar/polypyrrole composite by adsorption combined with reduction: Reaction pathway and contribution degree”, Colloids Surfaces A Physicochem. Eng. Asp., vol. 556, pp. 201–209, 2018, doi: https://doi.org/10.1016/j.colsurfa.2018.08.035.
[38] Y. Chen, B. Wang, J. Xin, P. Sun, and D. Wu, “Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera”, Ecotoxicol. Environ. Saf., vol. 164, pp. 440–447, 2018, doi: https://doi.org/10.1016/j.ecoenv.2018.08.024.
[39] M. Gheju, I. Balcu, and G. Mosoarca, “Removal of Cr(VI) from aqueous solutions by adsorption on MnO₂”, J. Hazard. Mater., vol. 310, pp. 270–277, 2016, doi: 10.1016/j.jhazmat.2016.02.042.
[40] X. S. Wang, Z. Z. Li, and S. R. Tao, “Removal of chromium (VI) from aqueous solution using walnut hull”, J. Environ. Manage., vol. 90, no. 2, pp. 721–729, 2009, doi: https://doi.org/10.1016/j.jenvman.2008.01.011.
[41] H. N. Tran et al., “Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review”, J. Hazard. Mater., vol. 373, pp. 258–270, 2019, doi: https://doi.org/10.1016/j.jhazmat.2019.03.018.
[42] X. He, X. Qiu, and J. Chen, “Preparation of Fe(II)–Al layered double hydroxides: Application to the adsorption/reduction of chromium”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 516, pp. 362–374, 2017.
[43] Q. An, X. Q. Li, H. Y. Nan, Y. Yu, and J. N. Jiang, “The potential adsorption mechanism of the biochars with different modification processes to Cr(VI)”, Environ. Sci. Pollut. Res., vol. 25, no. 31, pp. 31346–31357, 2018, doi: 10.1007/s11356-018-3107-7.
[44] C. Yang, J. Yuan, Y. Guo, and X. Luo, “In situ nano-assembly of Mg/Al LDH embedded on phosphorylated cellulose microspheres for tetracycline hydrochloride removal”, Cellulose, vol. 28, no. 1, pp. 301–316, 2021, doi: 10.1007/s10570-020-03533-8.
[45] A. Zaher, M. Taha, and R. K. Mahmoud, “Possible adsorption mechanisms of the removal of tetracycline from water by La-doped Zn-Fe-layered double hydroxide”, J. Mol. Liq., vol. 322, p. 114546, 2021, doi: 10.1016/j.molliq.2020.114546.
[46] S. A. Elfeky, S. E. Mahmoud, and A. F. Youssef, “Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water”, J. Adv. Res., vol. 8, no. 4, pp. 435–443, 2017, doi: https://doi.org/10.1016/j.jare.2017.06.002.
[47] N. Ghanbarpourabdoli, S. Raygan, and H. Abdizadeh, “Investigating selective removal of Cr(VI) and Zinc ions from aqueous media by mechanical-chemical activated red mud”, IUST, vol. 13, no. 4, pp. 20–32, Dec. 2016, doi: 10.22068/ijmse.13.4.20.