Đánh giá xu thế hạn khí tượng bằng phương pháp IPTA và chỉ số SPEI: ứng dụng cho tỉnh Trà Vinh
Tóm tắt: 229
|
PDF: 91
##plugins.themes.academic_pro.article.main##
Author
-
Hồ Văn HòaViện Môi Trường và Tài Nguyên, Đại học Quốc Gia Tp. Hồ Chí Minh, Việt NamTrần Thị KimTrường Đại học Khoa học tự nhiên, Đại học Quốc Gia Tp. Hồ Chí Minh, Việt NamLê Văn ThịnhTrung tâm Thủy Nông và Cấp nước, Viện khoa học Thủy lợi Miền Nam, Tp. Hồ Chí Minh, Việt NamNguyễn Thị BảyViện Ứng dụng công nghệ và Phát triển bền vững, Trường Đại học Nguyễn Tất Thành, Tp. Hồ Chí Minh, Việt Nam; Trung tâm Phát triển Công nghệ cao, Trường Đại học Nguyên Tất Thành, Tp. Hồ Chí Minh, Việt Nam
Từ khóa:
Tóm tắt
Nghiên cứu tập trung vào việc đánh giá xu thế biến động hạn hán theo chỉ số chuẩn hóa mưa - bốc hơi (SPEI) 1 tháng (hạn khí tượng) bằng việc sử dụng phương pháp xu thế đa giác cải tiến (IPTA). Khu vực áp dụng tính toán điển hình là trạm Càng Long, khu vực tỉnh Trà Vinh. Kết quả cho thấy, biến đổi khí hậu làm gia tăng xu thế hạn hán ở tháng 2 và 4 ở giai đoạn 1985-2022. Đáng chú ý, mức độ hạn hán cực trị trong các tháng này đã chuyển từ mức hạn vừa (giai đoạn 1985-2004) sang mức hạn nặng trong giai đoạn 2005 đến 2022). Kết quả từ nghiên cứu nhằm cung cấp cơ sở khoa học giúp các nhà quản lý và chuyên gia trong việc đánh giá xu thế hạn phục vụ cho việc đề xuất giải pháp tăng cường nguồn nước tưới trong các tháng khô hạn Cho khu vực nghiên cứu điển hình, kết quả này còn phục vụ cho việc điều chỉnh cơ cấu sản xuất nông nghiệp phù hợp với xu thế hạn hán trong tương lai cho tỉnh Trà Vinh.
Tài liệu tham khảo
-
[1] P. V. V. Le et al., “Responses of groundwater to precipitation variability and ENSO in the Vietnamese Mekong Delta”, Hydrol. Res., vol. 52, no. 6, pp. 1280–1293, Dec. 2021, doi: 10.2166/nh.2021.024.
[2] Q. T. To, “Study on upstream water resource fluctuations, extreme climatic conditions in the Mekong Delta, and proposed solutions for production structure transformation”. The Southern Institute of Water Resources Research, final report of project No. KC 08.04/16-20. p. 300, 2020.
[3] B. Nguyen, “Tra Vinh suffers severe damage due to drought and saltwater intrusion”, https://baocantho.com.vn/, 2020. [Online]. Available: https://baocantho.com.vn/tra-vinh-thiet-hai-nang-vi-han-han-va-xam-nhap-man-a120337.html [Accessed Apr. 16, 2020].
[4] M. Giang, “Drought and saltwater intrusion cause over 600 billion VND in damages”, https://dantri.com.vn/, 2016. [Online]. Available: https://dantri.com.vn/kinh-doanh/han-han-xam-nhap-man-lam-thiet-hai-hon-600-ty-dong-20160326164528725.htm [Accessed Mar. 26, 2016].
[5] IPCC, “Climate Change 2013: physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change”, in Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5), Cambridge Univ Press, New York, 2013, p. 1535.
[6] K. Abbass, M. Z. Qasim, H. Song, M. Murshed, H. Mahmood, and I. Younis, “A review of the global climate change impacts, adaptation, and sustainable mitigation measures”, Environ. Sci. Pollut. Res., vol. 29, no. 28, pp. 42539–42559, 2022, doi: 10.1007/s11356-022-19718-6.
[7] S. Nacar, M. Kankal, and U. Okkan, “Evaluation of the suitability of NCEP/NCAR, ERA-Interim and, ERA5 reanalysis data sets for statistical downscaling in the Eastern Black Sea Basin, Turkey”, Meteorol. Atmos. Phys., vol. 134, no. 2, p. 39, 2022, doi: 10.1007/s00703-022-00878-6.
[8] G. Zittis et al., “Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East”, Rev. Geophys., vol. 60, no. 3, p. e2021RG000762, 2022, doi: https://doi.org/10.1029/2021RG000762.
[9] H. Liu, L. Zou, J. Xia, T. Chen, and F. Wang, “Impact assessment of climate change and urbanization on the nonstationarity of extreme precipitation: A case study in an urban agglomeration in the middle reaches of the Yangtze river”, Sustain. Cities Soc., vol. 85, p. 104038, 2022, doi: https://doi.org/10.1016/j.scs.2022.104038.
[10] S. Ahsan, M. S. Bhat, A. Alam, H. Farooq, and H. A. Shiekh, “Evaluating the impact of climate change on extreme temperature and precipitation events over the Kashmir Himalaya”, Clim. Dyn., vol. 58, no. 5, pp. 1651–1669, 2022, doi: 10.1007/s00382-021-05984-6.
[11] L. T. A. Dao, T. A. Nguyen, and A. A. Chandio, “Climate change and its impacts on Vietnam agriculture: A macroeconomic perspective”, Ecol. Inform., vol. 74, p. 101960, 2023, doi: https://doi.org/10.1016/j.ecoinf.2022.101960.
[12] D. D. Tran et al., “Climate change impacts on rice-based livelihood vulnerability in the lower Vietnamese Mekong Delta: Empirical evidence from Can Tho City and Tra Vinh Province”, Environ. Technol. Innov., vol. 28, p. 102834, Nov. 2022, doi: 10.1016/J.ETI.2022.102834.
[13] L. V Noto, G. Cipolla, A. Francipane, and D. Pumo, “Climate Change in the Mediterranean Basin (Part I): Induced Alterations on Climate Forcings and Hydrological Processes”, Water Resour. Manag., vol. 37, no. 6, pp. 2287–2305, 2023, doi: 10.1007/s11269-022-03400-0.
[14] L. V Noto, G. Cipolla, D. Pumo, and A. Francipane, “Climate Change in the mediterranean basin (part ii): a review of challenges and uncertainties in climate change modeling and impact analyses”, Water Resour. Manag., vol. 37, no. 6, pp. 2307–2323, 2023, doi: 10.1007/s11269-023-03444-w.
[15] S. M. Vicente-Serrano, S. Beguería, and J. I. López-Moreno, “A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index”, J. Clim., vol. 23, no. 7, pp. 1696–1718, 2010, doi: 10.1175/2009JCLI2909.1.
[16] F. Serinaldi, F. Chebana, and C. G. Kilsby, “Dissecting innovative trend analysis”, Stoch. Environ. Res. Risk Assess., vol. 34, no. 5, pp. 733–754, 2020, doi: 10.1007/s00477-020-01797-x.
[17] G. Naveendrakumar et al., “South Asian perspective on temperature and rainfall extremes: A review”, Atmos. Res., vol. 225, no. August 2018, pp. 110–120, 2019, doi: 10.1016/j.atmosres.2019.03.021.
[18] B. K. Pandey, H. Tiwari, and D. Khare, “Trend analysis using discrete wavelet transform (DWT) for long-term precipitation (1851–2006) over India”, Hydrol. Sci. J., vol. 62, no. 13, pp. 2187–2208, 2017, doi: 10.1080/02626667.2017.1371849.
[19] P. J. Block, F. A. Souza Filho, L. Sun, and H. H. Kwon, “A streamflow forecasting framework using multiple climate and hydrological models”, J. Am. Water Resour. Assoc., vol. 45, no. 4, pp. 828–843, 2009, doi: 10.1111/j.1752-1688.2009.00327.x.
[20] Z. Sen, “Innovative Trend Analysis Methodology”, J. Hydrol. Eng., vol. 17, no. 9, pp. 1042–1046, 2012, doi: 10.1061/(asce)he.1943-5584.0000556.
[21] Z. Şen, “Innovative trend significance test and applications”, Theor. Appl. Climatol., vol. 127, no. 3, pp. 939–947, 2017, doi: 10.1007/s00704-015-1681-x.
[22] Z. Şen, E. Şişman, and I. Dabanli, “Innovative Polygon Trend Analysis (IPTA) and applications”, J. Hydrol., vol. 575, no. April, pp. 202–210, Aug. 2019, doi: 10.1016/j.jhydrol.2019.05.028.
[23] D. T. Anh, L. P. Hoang, M. D. Bui, and P. Rutschmann, “Modelling seasonal flows alteration in the Vietnamese Mekong Delta under upstream discharge changes, rainfall changes and sea level rise”, Int. J. River Basin Manag., vol. 17, no. 4, pp. 435–449, 2019, doi: 10.1080/15715124.2018.1505735.
[24] H. M. Nguyen, S. Ouillon, and V. D. Vu, “Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020)”, Water (Switzerland), vol. 14, no. 11, 2022, doi: 10.3390/w14111709.
[25] M. Zakwan, Q. B. Pham, O. Bonacci, and B. Đurin, “Application of revised innovative trend analysis in lower Drava River”, Arab. J. Geosci., vol. 15, no. 8, 2022, doi: 10.1007/s12517-022-09591-5.
[26] F. Akçay, M. Kankal, and M. Şan, “Innovative approaches to the trend assessment of streamflows in the Eastern Black Sea basin, Turkey”, Hydrological Sciences Journal, vol. 67, no. 2. pp. 222–247, 2022, doi: 10.1080/02626667.2021.1998509.
[27] H. Guo et al., “Meteorological drought analysis in the Lower Mekong Basin using satellite-based long-term CHIRPS product”, Sustain., vol. 9, no. 6, 2017, doi: 10.3390/su9060901.
[28] B. Zhang, L. Zhang, H. Guo, and P. Leinenkugel, “Drought impact on vegetation productivity in the Lower Mekong Basin”, Int. J. Remote Sens., no. August, pp. 37–41, 2014, doi: 10.1080/01431161.2014.890298.
[29] F. Tian et al., “Drought characteristics of Lancang-Mekong River basin and the impacts of reservoir regulation on streamflow”, 2020. https://www.semanticscholar.org/paper/Drought-Characteristics-of-Lancang-Mekong-River-and-Tian-Hou/e228052a460411069ab80636ade33f45bca8d234 [Accessed Feb. 14, 2021].
[30] O. Keovilignavong, T. H. Nguyen, and P. Hirsch, “Reviewing the causes of Mekong drought before and during 2019–2020”, Int. J. Water Resour. Dev., vol. 39, no. 1, pp. 155–175, 2023, doi: 10.1080/07900627.2021.1967112.
[31] S. M. Vicente-Serrano, S. Beguería, and J. I. López-Moreno, “A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index”, J. Clim., vol. 23, no. 7, pp. 1696–1718, 2010, doi: 10.1175/2009JCLI2909.1.
[32] L. T. Hoa, “The Impact of Saltwater Intrusion on Rice Cultivation and Aquaculture in Ham Tan Commune, Tra Cu District, Tra Vinh Province, Mekong Delta, Vietnam”, Eur. Sci. Journal, ESJ, vol. 19, no. 22, p. 27, 2023, doi: 10.19044/esj.2023.v19n22p27.
[33] MARD, Vietnam “Summary Report on the Drought Situation in Southern Provinces in 2019-2020”. phongchongthientai.mard.gov.vn, p. 7, 2020, [Online]. Available: https://phongchongthientai.mard.gov.vn/Pages/bao-cao-tong-hop-tinh-hinh-han-han-xam-nhap-man-khu-vuc-mien-nam-2019-2020.aspx. [Accessed Mar. 11, 2020].
[34] MONRE, Vienam Climate Change Scenario 2020. Published by the Vietnam Publishing House for Natural Resources, Environment and Cartography, 2022. [in Vietnamese]
[35] NOAA, “Cold & Warm Episodes by Season. 1985-2023”, origin.cpc.ncep.noaa.gov, 2023. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php [Accessed: Jul. 22, 2025]
[36] D. Van Binh et al., “Long-term alterations of flow regimes of the Mekong River and adaptation strategies for the Vietnamese Mekong Delta”, J. Hydrol. Reg. Stud., vol. 32, no. October, p. 100742, 2020, doi: 10.1016/j.ejrh.2020.100742.
[37] Southern Institute of Water Resources Research (SIWRR), “Project Report: Investigation, Forecasting, and Monitoring of Saltwater Intrusion in the Mekong Delta to Support Agricultural Production Management from 2005 to Present”, Ho Chi Minh City, Vietnam: SIWRR, [in Vietnamese].
[38] T. B. Mckee, N. J. Doesken, and J. Kleist, “The relationship of drought frequency and duration to time scales”, Eighth Conf. Appl. Climatol. Anaheim, 17-22 January 1993, 1993, pp. 179–184, [Online]. Available: https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf.
[39] S. M. Vicente-Serrano and National Center for Atmospheric Research Staff (Eds), “The Climate Data Guide: Standardized Precipitation Evapotranspiration Index (SPEI)”, Climate Data Guide, 29-Apr-2025. [Online]. Available: https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-evapotranspiration-index-spei. [Accessed: Jul. 22, 2025].
[40] C. N. X. Quang, H. V Hoa, N. N. H. Giang, and N. T. Hoa, “Assessment of meteorological drought in the Vietnamese Mekong delta in period 1985-2018”, IOP Conf. Ser. Earth Environ. Sci., vol. 652, no. 1, p. 012020, Feb. 2021, doi: 10.1088/1755-1315/652/1/012020.
[41] Z. Şen, “Up-to-date statistical essentials in climate change and hydrology: a review”, Int. J. Glob. Warm., vol. 22, no. 4, pp. 392–431, 2020.
[42] M. B. Yıldız, M. Kankal, S. Nacar, N. T. T. Linh, H. V. Hoa, and V. T. Nam, “Investigation of precipitation trends in Lower Mekong Delta River Basin of Vietnam by innovative trend analysis methods”, Theor. Appl. Climatol., vol. 155, no. 12, pp. 10033–10050, 2024, doi: 10.1007/s00704-024-05221-0.
[43] V. B. Doan et al., “Long-term alterations of flow regimes of the Mekong River and adaptation strategies for the Vietnamese Mekong Delta”, J. Hydrol. Reg. Stud., vol. 32, p. 100742, 2020, doi: 10.1016/j.ejrh.2020.100742.
[44] D. Van Binh et al., “Effects of riverbed incision on the hydrology of the Vietnamese Mekong Delta”, Hydrol. Process., vol. 35, no. 2, 2021, doi: 10.1002/hyp.14030.
[45] N. P. Mai, S. Kantoush, T. Sumi, T. D. Thang, L. V. Trung, and D. V. Binh, “Impacts of cascade hydropower development on salinity intrusion into Vietnamese Mekong Delta”, Proc. - Int. Assoc. Hydro-Environment Eng. Res. (IAHR)-Asia Pacific Div. Congr. Multi-Perspective Water Sustain. Dev. IAHR-APD 2018, vol. 1, no. November, 2018, pp. 503–511.

