High-order finite-volume weighted essentially non-oscillatory WENO-THETA6 method for the unsteady euler equations in one-dimensional computational fluid dynamics simulations
Abstract: 164
|
PDF: 76
##plugins.themes.academic_pro.article.main##
Author
-
Nguyen Minh Hieu PhamComputational Engineering Study Program, Vietnamese-German University, VietnamThien Binh NguyenComputational Engineering Study Program, Vietnamese-German University, Vietnam
Keywords:
Abstract
A sixth-order finite-volume WENO method is proposed for one-dimensional problems with shocks in computational fluid dynamics simulations in which the hyperbolic Euler system are the governing equations. Finite-volume spatial discretization is a natural approach for hyperbolic problems, thanks to its conservation property. Adaptively switching between high-order and low-order reconstructed solutions at the finite-volume cell interfaces using a new set of symmetric smoothness indicators, the developed method excels in resolving small-scaled structures in smooth regions of the solution and sharply capturing shocks and discontinuities without introducing non-physical oscillatory disturbances in the numerical approximation in the vicinity of shocks. Numerical comparisons with other latest WENO methods demonstrate the outperformance of our proposed method.
References
-
[1] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 3rd ed., Dordrecht New York: Springer, 2009.
[2] C.-Y. Jung and T. B. Nguyen, “A new adaptive weighted essentially non-oscillatory WENO-θ scheme for hyperbolic conservation laws”, J. Comput. Appl. Math., vol. 328, pp. 314–339, Jan. 2018, doi: 10.1016/j.cam.2017.07.019.
[3] D. Christodoulou, “The Euler Equations of Compressible Fluid Flow”, Bull. Am. Math. Soc., vol. 44, no. 4, pp. 581–602, Jun. 2007, doi: 10.1090/S0273-0979-07-01181-0.
[4] O. Darrigol and U. Frisch, “From Newton’s mechanics to Euler’s equations”, Phys. Nonlinear Phenom., vol. 237, no. 14–17, pp. 1855–1869, Aug. 2008, doi: 10.1016/j.physd.2007.08.003.
[5] P. Hopkins, “O-T Vortex Test Page”, Princeton University Department of Astrophysical Sciences. [Online]. Available: https://www.astro.princeton.edu/~jstone/Athena/tests/orszag-tang/pagesource.html [Accessed: Mar. 07, 2025].
[6] B. Punsly, D. Balsara, J. Kim, and S. Garain, “Riemann solvers and Alfven waves in black hole magnetospheres”, Comput. Astrophys. Cosmol., vol. 3, no. 1, p. 5, Sep. 2016, doi: 10.1186/s40668-016-0018-1.
[7] D. P. Hampshire, “A derivation of Maxwell’s equations using the Heaviside notation”, Philos. Trans. R. Soc. Math. Phys. Eng. Sci., vol. 376, no. 2134, p. 20170447, Dec. 2018, doi: 10.1098/rsta.2017.0447.
[8] National Institute of Standards and Technology, “CODATA Value: speed of light in vacuum”. physics.nist.gov. [Online]. Available: https://physics.nist.gov/cgi-bin/cuu/Value?c [Accessed: Mar. 07, 2025].
[9] J. D. Jackson, Classical electrodynamics, 3rd ed., Hoboken, NY: Wiley, 2009.
[10] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., vol. 49, no. 3, pp. 357–393, Mar. 1983, doi: 10.1016/0021-9991(83)90136-5.
[11] A. Harten, “On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes”, SIAM J. Numer. Anal., vol. 21, no. 1, pp. 1–23, Feb. 1984, doi: 10.1137/0721001.
[12] A. Harten and S. Osher, “Uniformly High-Order Accurate Nonoscillatory Schemes. I”, SIAM J. Numer. Anal., vol. 24, no. 2, pp. 279–309, 1987.
[13] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, “Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III”, J. Comput. Phys., vol. 131, no. 1, pp. 3–47, Feb. 1997, doi: 10.1006/jcph.1996.5632.
[14] X.-D. Liu, S. Osher, and T. Chan, “Weighted Essentially Non-oscillatory Schemes”, J. Comput. Phys., vol. 115, no. 1, pp. 200–212, Nov. 1994, doi: 10.1006/jcph.1994.1187.
[15] G.-S. Jiang and C.-W. Shu, “Efficient Implementation of Weighted ENO Schemes”, J. Comput. Phys., vol. 126, no. 1, pp. 202–228, Jun. 1996, doi: 10.1006/jcph.1996.0130.
[16] C.-W. Shu, “High-order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD”, Int. J. Comput. Fluid Dyn., vol. 17, no. 2, pp. 107–118, Mar. 2003, doi: 10.1080/1061856031000104851.
[17] D. S. Balsara and C.-W. Shu, “Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy”, J. Comput. Phys., vol. 160, no. 2, pp. 405–452, May 2000, doi: 10.1006/jcph.2000.6443.
[18] X. Ji and Y. Zheng, “Characteristic decouplings and interactions of rarefaction waves of 2D Euler equations”, J. Math. Anal. Appl., vol. 406, no. 1, pp. 4–14, Oct. 2013, doi: 10.1016/j.jmaa.2012.05.035.
[19] A. K. Henrick, T. D. Aslam, and J. M. Powers, “Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points”, J. Comput. Phys., vol. 207, no. 2, pp. 542–567, Aug. 2005, doi: 10.1016/j.jcp.2005.01.023.
[20] R. Borges, M. Carmona, B. Costa, and W. S. Don, “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws”, J. Comput. Phys., vol. 227, no. 6, pp. 3191–3211, Mar. 2008, doi: 10.1016/j.jcp.2007.11.038.
[21] M. Castro, B. Costa, and W. S. Don, “High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws”, J. Comput. Phys., vol. 230, no. 5, pp. 1766–1792, Mar. 2011, doi: 10.1016/j.jcp.2010.11.028.
[22] N. K. Yamaleev and M. H. Carpenter, “A systematic methodology for constructing high-order energy stable WENO schemes”, J. Comput. Phys., vol. 228, no. 11, pp. 4248–4272, Jun. 2009, doi: 10.1016/j.jcp.2009.03.002.
[23] M. H. Carpenter, T. C. Fisher, and N. K. Yamaleev, “Boundary Closures for Sixth-Order Energy-Stable Weighted Essentially Non-Oscillatory Finite-Difference Schemes”, in Advances in Applied Mathematics, Modeling, and Computational Science, vol. 66, R. Melnik and I. S. Kotsireas, Eds., Fields Institute Communications, Boston, MA: Springer US, 2013, pp. 117–160, doi: 10.1007/978-1-4614-5389-5_6.
[24] X. Y. Hu, Q. Wang, and N. A. Adams, “An adaptive central-upwind weighted essentially non-oscillatory scheme”, J. Comput. Phys., vol. 229, no. 23, pp. 8952–8965, Nov. 2010, doi: 10.1016/j.jcp.2010.08.019.
[25] F. Hu, “The 6th-order weighted ENO schemes for hyperbolic conservation laws”, Comput. Fluids, vol. 174, pp. 34–45, Sep. 2018, doi: 10.1016/j.compfluid.2018.07.008.
[26] C. Huang and L. L. Chen, “A new adaptively central-upwind sixth-order WENO scheme”, J. Comput. Phys., vol. 357, pp. 1–15, Mar. 2018, doi: 10.1016/j.jcp.2017.12.032.
[27] K. Zhao, Y. Du, and L. Yuan, “A New Sixth-Order WENO Scheme for Solving Hyperbolic Conservation Laws”, Commun. Appl. Math. Comput., vol. 5, no. 1, pp. 3–30, Mar. 2023, doi: 10.1007/s42967-020-00112-3.
[28] J. D. Anderson, Computational fluid dynamics: the basics with applications, Internat. ed., McGraw-Hill, 2006.
[29] C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comput. Phys., vol. 77, no. 2, pp. 439–471, Aug. 1988, doi: 10.1016/0021-9991(88)90177-5.
[30] C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes, II”, J. Comput. Phys., vol. 83, no. 1, pp. 32–78, Jul. 1989, doi: 10.1016/0021-9991(89)90222-2.
[31] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws”, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, vol. 1697, A. Quarteroni, Ed., Lecture Notes in Mathematics, Springer Berlin Heidelberg, 1998, pp. 325–432, doi: 10.1007/BFb0096355.
[32] B. Cockburn, S.-Y. Lin, and C.-W. Shu, “TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems”, J. Comput. Phys., vol. 84, no. 1, pp. 90–113, Sep. 1989, doi: 10.1016/0021-9991(89)90183-6.
[33] P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes”, J. Comput. Phys., vol. 43, no. 2, pp. 357–372, Oct. 1981, doi: 10.1016/0021-9991(81)90128-5.
[34] P. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., vol. 54, no. 1, pp. 115–173, Apr. 1984, doi: 10.1016/0021-9991(84)90142-6.

