Thiết kế giải pháp điều khiển không dây cho hệ truyền động ứng dụng bộ điều khiển PID kết hợp thuật toán di truyền và bộ quan sát nhiễu
Tóm tắt: 244
|
PDF: 233
##plugins.themes.academic_pro.article.main##
Author
-
An Ngoc HaSchool of Electrical and Electronic Engineering, Hanoi University of Science and Technology, VietnamNguyen Duc HieuSchool of Electrical and Electronic Engineering, Hanoi University of Science and Technology, VietnamGiap Van NamSchool of Electrical and Electronic Engineering, Hanoi University of Science and Technology, VietnamDoan Van DongThe University of Danang - University of Technology and Education, Vietnam
Từ khóa:
Tóm tắt
Bài báo đề xuất một hệ thống điều khiển song phương an toàn thông tin cho động cơ một chiều kích từ độc lập thông qua truyền thông không dây. Trong hệ thống này, tín hiệu điều khiển xung PWM và tín hiệu phản hồi tốc độ được mã hóa bằng hai hệ hỗn loạn Liu - hệ chủ đặt tại trạm điều khiển và hệ tớ đặt tại khu vực điều khiển từ xa. Việc mã hóa giúp tăng tính bảo mật, ngăn chặn các nguy cơ nghe lén hoặc tấn công trong quá trình truyền dữ liệu. Để có thể thực hiện mã hóa và giải mã bằng hệ hỗn loạn, ta cần đạt được tính đồng bộ giữa hai hệ hỗn loạn với các điều kiện khởi đầu khác nhau. Do đó, bộ điều khiển PID được tích hợp, kết hợp với bộ kháng nhiễu. Quá trình tối ưu tham số PID được thực hiện bằng thuật toán di truyền (Genetic Algorithm). Tính khả thi và hiệu quả của phương pháp được xác thực thông qua thí nghiệm thực tế với hai vi điều khiển ESP32.
Tài liệu tham khảo
-
[1] Salitula and C. Jaipradidtham, “Real time traffic control system using wavelet neural networks signal for wireless communication technology of future high speed railways performance in Thailand with intelligent transportation systems”, in Proc. 17th Int. Conf. Control, Autom. and Syst. (ICCAS), Jeju, Korea (South), 2017, pp. 389–394. https://doi.org/10.23919/ICCAS.2017.8204471
[2] He and C. Zhao, “Wireless communication power stable control method based on adaptive algorithm”, in Proc. Global Reliability and Prognostics and Health Management (PHM-Yantai), Yantai, China, 2022, pp. 1–7. https://doi.org/10.1109/PHM-Yantai55411.2022.9942012
[3] Witheephanich, J. M. Escaño, D. Muñoz de la Peña, and M. J. Hayes, “A Min–Max model predictive control approach to robust power management in ambulatory wireless sensor networks”, IEEE Systems Journal, vol. 8, no. 4, pp. 1060–1073, 2014. https://doi.org/10.1109/JSYST.2013.2271388
[4] Han, D. Sun, and Y. Li, “Adaptive power control for wireless communication systems with nonlinear disturbances”, in Proc. Second Int. Conf. Networks Security, Wireless Communications and Trusted Computing, Wuhan, China, 2010, pp. 261–264. https://doi.org/10.1109/NSWCTC.2010.249
[5] Cohen, “Automated control system security”, IEEE Security & Privacy, vol. 8, no. 5, pp. 62–63, Sept.–Oct. 2010. https://doi.org/10.1109/MSP.2010.146
[6] N. Giap, Q. D. Nguyen, D. H. Pham, and C.-M. Lin, “Wireless secure communication of chaotic systems based on Takagi–Sugeno fuzzy optimal time varying disturbance observer and sliding mode control”, International Journal of Fuzzy Systems, vol. 25, no. 7, pp. 2519–2533, 2023. https://doi.org/10.1007/s40815-023-01552-8
[7] Lendek, T. Guerra, R. Babuska, and B. D. Schutter, Stability Analysis and Nonlinear Observer Design Using Takagi–Sugeno Fuzzy Models. Dordrecht, The Netherlands: Springer-Verlag, 2010.
[8] D. Nguyen, V. N. Giap, D. H. Pham, and S. C. Huang, “Fast speed convergent stability of T–S fuzzy sliding-mode control and disturbance observer for a secure communication of chaos-based system”, IEEE Access, vol. 10, pp. 95781–95790, 2022. https://doi.org/10.1109/ACCESS.2022.3205027
[9] D. Nguyen, Q. D. Pham, N. T. Thanh, and V. N. Giap, “An optimal homogenous stability-based disturbance observer and sliding mode control for secure communication system”, IEEE Access, vol. 11, pp. 27317–27329, 2023. https://doi.org/10.1109/ACCESS.2023.3257854
[10] D. Nguyen, S.-C. Huang, and V. N. Giap, “Robust adaptive terminal fixed time sliding-mode control for a secure communication of T–S fuzzy systems”, Journal of Control, Automation and Electrical Systems, vol. 34, no. 3, pp. 507–518, Jun. 2023. https://doi.org/10.1007/s40313-023-00991-w
[11] D. Nguyen, D. D. Vu, S.-C. Huang, and V. N. Giap, ‘‘Fixed-time supper twisting disturbance observer and sliding mode control for a secure communication of fractional-order chaotic systems”, J. Vibrat. Control, vol. 30, no. 11-12, 2023, https://doi.org/10.1177/10775463231180947
[12] N. Giap, “Text message secure communication based on fractional order chaotic systems with Takagi–Sugeno fuzzy disturbance observer and sliding mode control”, International Journal of Dynamics and Control, vol. 11, pp. 3109–3123, May 2023. https://doi.org/10.1007/s40435-023-01170-0
[13] Sakthivel, R. Sakthivel, O. Kwon, and P. Selvaraj, “Synchronisation of stochastic T–S fuzzy multi-weighted complex dynamical networks with actuator fault and input saturation”, IET Control Theory & Applications, vol. 14, no. 14, pp. 1957–1967, Sep. 2020. https://doi.org/10.1049/iet-cta.2019.1267
[14] -P. Vu, W.-J. Wang, H.-C. Chen, and J. M. Zurada, “Unknown input based observer synthesis for a polynomial T–S fuzzy model system with uncertainties”, IEEE Transactions on Fuzzy Systems, vol. 26, no. 3, pp. 1447–1458, Jun. 2018. https://doi.org/10.1109/TFUZZ.2017.2724507
[15] Zhang, R. Li, and J. Ren, “Robust adaptive sliding mode observer design for T–S fuzzy descriptor systems with time varying delay”, IEEE Access, vol. 6, pp. 46002–46018, 2018. https://doi.org/10.1109/ACCESS.2018.2865618
[16] Ogata, Modern Control Engineering, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2010, ch. 10, pp. 669–709.
[17] P. Q. Nguyen and T. H. T. Le, “An innovative genetic algorithm-based M schedule to optimize job shop scheduling problem”, The University of Danang - Journal of Science and Technology, vol. 22, no. 12, pp. 7–12, 2024. https://doi.org/10.31130/ud-jst.2024.422E
[18] -C. Chu, C.-S. Shieh, and J. F. Roddick, “A tutorial on meta-heuristics for optimization”, in Intelligent Watermarking Techniques, J.-S. Pan, H.-C. Huang, and L. C. Jain, Eds. Singapore: World Scientific Publishing Company, 2004, ch. 4, pp. 97–132.
[19] -N. Giap, S.-C. Huang, Q. D. Nguyen, and T.-J. Su, “Robust control based disturbance observer and optimal states feedback for T–S fuzzy systems”, Journal of Low Frequency Noise, Vibration and Active Control, vol. 40, no. 3, pp. 1509–1525, Dec. 2020. https://doi.org/10.1177/1461348420981181.
[20] Hwang and H. S. Kim, “Extended disturbance observer-based integral sliding mode control for nonlinear system via T–S fuzzy model”, IEEE Access, vol. 8, pp. 116090–116105, 2020. https://doi.org/10.1109/ACCESS.2020.3004241
[21] -H. Chen, D. J. Ballance, P. J. Gawthrop, and J. O’Reilly, “A nonlinear disturbance observer for robotic manipulators”, IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 932–938, Aug. 2000. https://doi.org/10.1109/41.857974
[22] Wu, K. Xu, M. Lei, and X. He, “Disturbance-compensation-based continuous sliding mode control for overhead cranes with disturbances”, IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 2182–2189, Oct. 2020. https://doi.org/10.1109/TASE.2020.3015870
[23] J. Ewins, S. G. Braun, and S. S. Rao, Encyclopedia of Vibration, Three Volume Set. New York, NY, USA: Elsevier, 2001.
[24] Q. Zhong and W. K. S. Tang, “Circuitry implementation and synchronization of Chen’s attractor”, International Journal of Bifurcation and Chaos, vol. 12, no. 6, pp. 1423–1427, Jun. 2002. https://doi.org/10.1142/S0218127402005224
[25] M. C. Le, V. N. Giap, Q. D. Nguyen, and S.-C. Huang, “Electrocardiogram signal secure transmission via a wireless communication protocol of chaotic systems based on adaptive sliding mode control and disturbance observer”, IEEE Access, vol. 11, pp. 145373–145385, 2023. https://doi.org/10.1109/ACCESS.2023.3343954

