Strain and temperature engineering of energy storage performance in ferroelectric/paraelectric superlattices
Abstract: 69
|
PDF: 68
##plugins.themes.academic_pro.article.main##
Author
-
Ha Thi DangVietnam National University of Forestry, Hanoi, Vietnam; PhD student in Materials Engineering, Hanoi University of Science and Technology, Hanoi, VietnamDang Thi Hong HueHanoi University of Science and Technology, Hanoi, VietnamBa-Hieu VuHanoi University of Science and Technology, Hanoi, VietnamTrong-Giang NguyenHanoi University of Science and Technology, Hanoi, VietnamVan-Hai DinhHanoi University of Science and Technology, Hanoi, VietnamLe Van LichHanoi University of Science and Technology, Hanoi, Vietnam
Keywords:
Abstract
This study investigates the effects of biaxial strain and temperature on polarization domains and energy storage properties of lead titanate/strontium titanate superlattices through phase-field simulations. The superlattice exhibits periodic polarization vortices with alternating symmetries, whose distribution is strain-dependent: compressive strain enlarges vortex regions, while tensile strain suppresses them, favoring uniform alignment. These domain reconfigurations govern hysteresis, with compressive strain yielding single-loop and tensile strain producing double-loop polarization–electric field responses. Energy storage performance exhibits strong strain dependence, under tensile strain achieving optimal discharge energy density of 74.03 J/cm³ and efficiency of 99.74%, a 25% enhancement over compressive conditions. Thermal analysis confirms stable energy storage up to 500°C, highlighting operational robustness. By correlating mechanical-thermal stimuli with domain evolution, this work establishes strain engineering as an effective strategy for designing ferroelectric superlattices with on-demand energy storage capabilities, advancing the development of adaptive dielectric capacitors.
References
-
[1] H. Palneedi, M. Peddigari, G. T. Hwang, D. Y. Jeong, and J. Ryu, "High‐performance dielectric ceramic films for energy storage capacitors: progress and outlook", Advanced Functional Materials, vol. 28, no. 42, pp. 1803665, 2018. https://doi.org/10.1002/adfm.201803665
[2] L. Yang et al., "Perovskite lead-free dielectrics for energy storage applications", Progress in Materials Science, vol. 102, pp. 72-108, 2019. https://doi.org/10.1016/j.pmatsci.2018.12.005
[3] G. Wang et al., "Electroceramics for high-energy density capacitors: current status and future perspectives", Chemical Reviews, vol. 121, no. 10, pp. 6124-6172, 2021. https://doi.org/10.1021/acs.chemrev.0c01264
[4] H. Pan et al., "Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design", Science, vol. 365, no. 6453, pp. 578-582, 2019. DOI: 10.1126/science.aaw8109
[5] J. Kim et al., "Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films", Science, vol. 369, no. 6499, pp. 81-84, 2020. DOI: 10.1126/science.abb0631
[6] L.E. Cross, "Relaxor ferroelectrics", Ferroelectrics, vol. 76, no. 1, pp. 241-267, 1987. https://doi.org/10.1080/00150198708016945
[7] A. Bokov and Z.-G. Ye, "Recent progress in relaxor ferroelectrics with perovskite structure", Journal of Materials Science, vol. 41, no. 1, pp. 31-52, 2006. https://doi.org/10.1007/s10853-005-5915-7
[8] F. Li et al., "Ultrahigh piezoelectricity in ferroelectric ceramics by design", Nature Materials, vol. 17, no. 4, pp. 349-354, 2018. https://doi.org/10.1038/s41563-018-0034-4
[9] F. Li et al., "The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals", Nature Communications, vol. 7, no. 1, pp. 13807, 2016. https://doi.org/10.1038/ncomms13807
[10] H. Pan et al., "BiFeO3–SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance", Journal of Materials Chemistry A, vol. 5, no. 12, pp. 5920-5926, 2017. https://doi.org/10.1039/C7TA00665A
[11] K. Wang et al., "Superparaelectric (Ba0.95, Sr0.05)(Zr0.2,Ti0.8)O3 ultracapacitors", Advanced Energy Materials, vol. 10, no. 37, pp. 2001778, 2020. https://doi.org/10.1002/aenm.202001778
[12] H. Pan et al., "Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering", Nature Communications, vol. 9, no. 1, pp. 1813, 2018. https://doi.org/10.1038/s41467-018-04189-6
[13] Y. Tang et al., "Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films", Science, vol. 348, no. 6234, pp. 547-551, 2015. DOI: 10.1126/science.1259869
[14] Z. Hong et al., "Stability of polar vortex lattice in ferroelectric superlattices", Nano Letters, vol. 17, no. 4, pp. 2246-2252, 2017. https://doi.org/10.1021/acs.nanolett.6b04875
[15] A. Yadav et al., "Observation of polar vortices in oxide superlattices", Nature, vol. 530, no. 7589, pp. 198-201, 2016. https://doi.org/10.1038/nature16463
[16] S.L. Hsu et al., "Emergence of the vortex state in confined ferroelectric heterostructures", Advanced Materials, vol. 31, no. 36, pp. 1901014, 2019. https://doi.org/10.1002/adma.201901014
[17] A.Y. Abid et al., "Creating polar antivortex in PbTiO3/SrTiO3 superlattice", Nature Communications, vol. 12, no. 1, pp. 2054, 2021. https://doi.org/10.1038/s41467-021-22356-0
[18] S. Das et al., "Observation of room-temperature polar skyrmions", Nature, vol. 568, no. 7752, pp. 368-372, 2019. https://doi.org/10.1038/s41586-019-1092-8
[19] F.-H. Gong et al., "Atomic mapping of periodic dipole waves in ferroelectric oxide", Science Advances, vol. 7, no. 28, pp. eabg5503, 2021. DOI: 10.1126/sciadv.abg5503
[20] Y. Wang et al., "Polar meron lattice in strained oxide ferroelectrics", Nature Materials, vol. 19, no. 8, pp. 881-886, 2020. https://doi.org/10.1038/s41563-020-0694-8
[21] L.V. Lich et al., "Anomalous toughening in nanoscale ferroelectrics with polarization vortices", Acta Materialia, vol. 88, pp. 147-155, 2015. https://doi.org/10.1016/j.actamat.2014.12.056
[22] L.V. Lich et al., "Continuum thermodynamics of unusual domain evolution-induced toughening effect in nanocracked strontium titanate", Engineering Fracture Mechanics, vol. 190, pp. 232-244, 2018. https://doi.org/10.1016/j.engfracmech.2017.12.030
[23] N. Pertsev, A. Tagantsev, and N. Setter, "Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films", Physical Review B, vol. 61, no. 2, pp. R825, 2000. https://doi.org/10.1103/PhysRevB.61.R825
[24] H. Uwe and T. Sakudo, "Stress-induced ferroelectricity and soft phonon modes in SrTiO3", Physical Review B, vol. 13, no. 1, pp. 271, 1976. https://doi.org/10.1103/PhysRevB.13.271
[25] A.K. Tagantsev, E. Courtens, and L. Arzel, "Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate", Physical Review B, vol. 64, no. 22, pp. 224107, 2001. https://doi.org/10.1103/PhysRevB.64.224107
[26] Y.H. Huang et al., "Thermodynamic and phase-field studies of phase transitions, domain structures, and switching for Ba(ZrxTi1−x)O3 solid solutions", Acta Materialia, vol. 186, pp. 609-615, 2020. https://doi.org/10.1016/j.actamat.2020.01.019
[27] L.V. Lich et al., "Low-field energy storage enhancement in ferroelectric/paraelectric PbTiO3/SrTiO3 nanocomposites near antiferroelectric–ferroelectric transition region", Journal of Science: Advanced Materials Devices, vol. 9, no. 2, pp. 100687, 2024. https://doi.org/10.1016/j.jsamd.2024.100687

