Geometric tuning of energy storage in barium titanate/strontium titanate nanocomposites
Tóm tắt: 21
|
PDF: 15
##plugins.themes.academic_pro.article.main##
Author
-
Ha Thi DangVietnam National University of Forestry, Hanoi, Vietnam; PhD student in Materials Engineering, Hanoi University of Science and Technology, Hanoi, VietnamDang Thi Hong HueHanoi University of Science and Technology, Hanoi, VietnamBa-Hieu VuHanoi University of Science and Technology, Hanoi, VietnamTrong-Giang NguyenHanoi University of Science and Technology, Hanoi, VietnamVan-Hai DinhHanoi University of Science and Technology, Hanoi, VietnamLe Van LichHanoi University of Science and Technology, Hanoi, Vietnam
Từ khóa:
Tóm tắt
This study employs phase-field simulations to systematically investigate the impact of barium titanate nanoparticle geometry on polarization domain structures and energy storage properties in barium titanate/strontium titanate nanocomposites. Results reveal distinct polarization domain configurations, including dominant c domains in nanowire-based composites, coexisting a1/a2 and c domains with comparable fractions in nanodot systems, and a near-absence of c domains in nanodisk geometries. These variations of domain structures give rise to divergent hysteresis behaviors, where nanowire composites exhibit large hysteresis loops, nanodot systems display narrower loops, and nanodisk configurations show negligible hysteresis behavior. Notably, transitioning barium titanate geometry from nanowires to nanodisks significantly enhances discharge energy density and energy efficiency, attributed to optimized domain dynamics. The findings propose a novel strategy for improving energy storage capacity in ferroelectric/paraelectric nanocomposites through geometric engineering of the ferroelectric phase to regulate polarization domain structures.
Tài liệu tham khảo
-
[1] H.D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, ''On the challenge of developing advanced technologies for electrochemical energy storage and conversion'', Materials Today, vol. 17, no. 3, pp. 110-121, 2014. https://doi.org/10.1016/j.mattod.2014.02.014
[2] Y. Huang et al., ''Multifunctional energy storage and conversion devices'', Advanced Materials, vol. 28, no. 38, pp. 8344-8364, 2016. https://doi.org/10.1002/adma.201601928
[3] S.L. Candelaria et al., ''Nanostructured carbon for energy storage and conversion'', Nano Energy, vol. 1, no. 2, pp. 195-220, 2012. https://doi.org/10.1016/j.nanoen.2011.11.006
[4] H. Palneedi, M. Peddigari, G. T. Hwang, D. Y. Jeong, and J. Ryu, ''High‐performance dielectric ceramic films for energy storage capacitors: progress and outlook'', Advanced Functional Materials, vol. 28, no. 42, pp. 1803665, 2018. https://doi.org/10.1002/adfm.201803665
[5] L. Yang et al., ''Perovskite lead-free dielectrics for energy storage applications'', Progress in Materials Science, vol. 102, pp. 72-108, 2019. https://doi.org/10.1016/j.pmatsci.2018.12.005
[6] H. Huang and J.F. Scott, Ferroelectric Materials for Energy Applications, John Wiley & Sons, 2018.
[7] Z. Lu et al., ''Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics'', Nano Energy, vol. 79, pp. 105423, 2021. https://doi.org/10.1016/j.nanoen.2020.105423
[8] Z. Lu et al., ''Superior energy density through tailored dopant strategies in multilayer ceramic capacitors'', Energy & Environmental Science, vol. 13, no. 9, pp. 2938-2948, 2020. DOI: 10.1039/D0EE02104K
[9] H. Ji et al., ''Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation'', Energy Storage Materials, vol. 38, pp. 113-120, 2021. https://doi.org/10.1016/j.ensm.2021.01.023
[10] H. Ye et al., ''Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications'', Acta Materialia, vol. 203, pp. 116484, 2021. https://doi.org/10.1016/j.actamat.2020.116484
[11] J. Chen, H. Qi, and R. Zuo, ''Realizing Stable Relaxor Antiferroelectric and Superior Energy Storage Properties in (Na1-x/2La x/2)(Nb1-xTix)O3 Lead-Free Ceramics through A/B-Site Complex Substitution'', ACS Applied Materials & Interfaces, vol. 12, no. 29, pp. 32871-32879, 2020. https://doi.org/10.1021/acsami.0c09876
[12] Z. Yang et al., ''Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties'', Nano Energy, vol. 58, pp. 768-777, 2019. https://doi.org/10.1016/j.nanoen.2019.02.003
[13] H. Pan et al., ''Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering'', Nature Communications, vol. 9, no. 1, pp. 1813, 2018. https://doi.org/10.1038/s41467-018-04189-6
[14] H. Qi, A. Xie, A. Tian, and R. Zuo, ''Superior energy‐storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3‐BaTiO3‐NaNbO3 lead‐free bulk ferroelectrics'', Advanced Energy Materials, vol. 10, no. 6, pp. 1903338, 2020. https://doi.org/10.1002/aenm.201903338
[15] Q. Wang et al., ''Bi0.5Na0.5TiO3-based relaxor-ferroelectric ceramics for low-electric-field dielectric energy storage via bidirectional optimization strategy'', Chemical Engineering Journal, vol. 452, pp. 139422, 2023. https://doi.org/10.1016/j.cej.2022.139422
[16] Q. Zheng, B. Xie, Y. Tian, Q. Wang, H. Luo, Z. Liu, and H. Zhang, ''High recoverable energy density of Na0.5Bi0.5TiO3-based ceramics by multi-scale insulation regulation and relaxor optimization strategy'', Journal of Materiomics, vol. 10, no. 4, pp. 845-856, 2024. https://doi.org/10.1016/j.jmat.2023.10.005
[17] H. Pan, A. Kursumovic, Y.-H. Lin, C.-W. Nan, and J. L. MacManus-Driscoll, ''Dielectric films for high performance capacitive energy storage: multiscale engineering'', Nanoscale, vol. 12, no. 38, pp. 19582-19591, 2020. DOI: 10.1039/D0NR05709F
[18] X. Lv, X.-x. Zhang, and J. Wu, ''Nano-domains in lead-free piezoceramics: a review'', Journal of Materials Chemistry A, vol. 8, no. 20, pp. 10026-10073, 2020. https://doi.org/10.1039/D0TA03201H
[19] B. Ma, Z. Hu, R.E. Koritala, T.H. Lee, S.E. Dorris, and U. Balachandran, ''PLZT film capacitors for power electronics and energy storage applications'', Journal of Materials Science: Materials in Electronics, vol. 26, no. 12, pp. 9279-9287, 2015. https://doi.org/10.1007/s10854-015-3025-0
[20] H. Pan et al., ''Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design'', Science, vol. 365, no. 6453, pp. 578-582, 2019. DOI: 10.1126/science.aaw8109
[21] J. Kim et al., ''Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films'', Science, vol. 369, no. 6499, pp. 81-84, 2020. DOI: 10.1126/science.abb0631
[22] H. Pan et al., ''Ultrahigh energy storage in superparaelectric relaxor ferroelectrics'', Science, vol. 374, no. 6563, pp. 100-104, 2021. DOI: 10.1126/science.abi7687
[23] J. Cai et al., ''Design and preparation of ternary polymer nanocomposites for high energy density film capacitors'', Composites Science & Technology, vol. 245, pp. 110361, 2024. https://doi.org/10.1016/j.compscitech.2023.110361
[24] R. Kang et al., ''Domain engineered lead-free ceramics with large energy storage density and ultra-high efficiency under low electric fields'', ACS Applied Materials & Interfaces, vol. 13, no. 21, pp. 25143-25152, 2021. https://doi.org/10.1021/acsami.1c05824
[25] D. Zheng, R. Zuo, D. Zhang, and Y. Li, ''Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3 lead‐free relaxor ferroelectric ceramics for energy‐storage capacitors'', Journal of the American Ceramic Society, vol. 98, no. 9, pp. 2692-2695, 2015. https://doi.org/10.1111/jace.13737
[26] D. Zheng and R. Zuo, ''Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range'', Journal of the European Ceramic Society, vol. 37, no. 1, pp. 413-418, 2017. https://doi.org/10.1016/j.jeurceramsoc.2016.08.021
[27] Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, and X. Wei, ''Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics'', Journal of Alloys & Compounds, vol. 640, pp. 416-420, 2015. https://doi.org/10.1016/j.jallcom.2015.02.225
[28] M. Peddigari et al., ''Boosting the recoverable energy density of lead-free ferroelectric ceramic thick films through artificially induced quasi-relaxor behavior'', ACS Applied Materials & Interfaces, vol. 10, no. 24, pp. 20720-20727, 2018. https://doi.org/10.1021/acsami.8b05347
[29] Z. Yang et al., ''Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics'', Journal of Materials Chemistry A, vol. 4, no. 36, pp. 13778-13785, 2016. https://doi.org/10.1039/C6TA04107H
[30] T. Shao et al., ''Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials'', Journal of Materials Chemistry A, vol. 5, no. 2, pp. 554-563, 2017. https://doi.org/10.1039/C6TA07803F
[31] B.-H. Vu, D.T.H. Hue, T. Shimada, V.-H. Dinh, and M.-H. Phan, ''Low-field energy storage enhancement in ferroelectric/paraelectric PbTiO3/SrTiO3 nanocomposites near antiferroelectric–ferroelectric transition region'', Journal of Science: Advanced Materials & Devices, vol. 9, no. 2, pp. 100687, 2024. https://doi.org/10.1016/j.jsamd.2024.100687
[32] N. Pertsev, A. Tagantsev, and N. Setter, ''Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films'', Physical Review B, vol. 61, no. 2, pp. R825, 2000. https://doi.org/10.1103/PhysRevB.61.R825
[33] J. Wang, X. Ma, Q. Li, J. Britson, and L.-Q. Chen, ''Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity'', Acta Materialia, vol. 61, no. 20, pp. 7591-7603, 2013. https://doi.org/10.1016/j.actamat.2013.08.055
[34] H. T. Dang and V.-H. Dinh, ''Polar toron structure in ferroelectric core-shell nanoparticles'', Scripta Materialia, vol. 236, pp. 115641, 2023. https://doi.org/10.1016/j.scriptamat.2023.115641
[35] A. Schilling et al., ''Domains in ferroelectric nanodots'', Nano Letters, vol. 9, no. 9, pp. 3359-3364, 2009. https://doi.org/10.1021/nl901661a
[36] S. Prosandeev and L. Bellaiche, ''Characteristics and signatures of dipole vortices in ferroelectric nanodots: First-principles-based simulations and analytical expressions'', Physical Review B, vol. 75, no. 9, pp. 094102, 2007. https://doi.org/10.1103/PhysRevB.75.094102
[37] Y.H. Huang et al., ''Thermodynamic and phase-field studies of phase transitions, domain structures, and switching for Ba(ZrxTi1−x)O3 solid solutions'', Acta Materialia, vol. 186, pp. 609-615, 2020. https://doi.org/10.1016/j.actamat.2020.01.019
[38] J.-J. Wang, Y.-J. Su, B. Wang, J. Ouyang, Y.-H. Ren, and L.-Q. Chen, ''Strain engineering of dischargeable energy density of ferroelectric thin-film capacitors'', Nano Energy, vol. 72, pp. 104665, 2020. https://doi.org/10.1016/j.nanoen.2020.104665
[39] A. Schilling, R. Bowman, G. Catalan, J. Scott, and J. Gregg, ''Morphological control of polar orientation in single-crystal ferroelectric nanowires'', Nano Letters, vol. 7, no. 12, pp. 3787-3791, 2007. https://doi.org/10.1021/nl072260l
[40] J. Hong, G. Catalan, D. Fang, E. Artacho, and J. Scott, ''Topology of the polarization field in ferroelectric nanowires from first principles'', Physical Review B, vol. 81, no. 17, pp. 172101, 2010. https://doi.org/10.1103/PhysRevB.81.172101
[41] J.F. Ihlefeld, D.T. Harris, R. Keech, J. L. Jones, J. P. Maria, and S. Trolier‐McKinstry, ''Scaling effects in perovskite ferroelectrics: fundamental limits and process‐structure‐property relations'', Journal of the American Ceramic Society, vol. 99, no. 8, pp. 2537-2557, 2016. https://doi.org/10.1111/jace.14387

