Tổng hợp hạt lai nhạy nhiệt từ poly(N-isopropylacrylamide) và silica
##plugins.themes.academic_pro.article.main##
Author
-
Cao Lưu Ngọc Hạnh, Nguyễn Thị Bích Thuyền, Lương Huỳnh Vủ Thanh, Đoàn Văn Hồng Thiện, Ngô Trương Ngọc Mai
Từ khóa:
N-isopropylacrylamide
silica
hạt lai nhạy nhiệt
cấu trúc vỏ-lõi
Tóm tắt
Nghiên cứu đã tổng hợp thành công hạt lai kết hợp giữa lõi poly(N-isopropylacrylamide) (PNIPAM) và vỏ silica dựa trên hai cách tiếp cận. Với cách tiếp cận thứ nhất, N,N′-methylenebisacrylamide (MBA) được dùng làm tác nhân liên kết ngang trong quá trình hình thành lõi hạt P(NIPAM/AM), tiếp theo là quá trình lắng đọng của tiền chất silica trên bề mặt lõi thông qua phản ứng sol-gel với sự hiện diện của 3-glycidyloxypropyltrimethoxysilane (GLYMO). Hạt lai P(NIPAM/AM/ MBA)@silica thu được có dạng hình cầu, cấu trúc vỏ-lõi, phân bố kích thước hẹp, và vẫn giữ được đặc tính nhạy nhiệt. Tuy nhiên, đường kính hạt tương đối to (563,5±28,2 nm). Theo cách thứ hai (không dùng MBA), các hạt lai P(NIPAM/AM)@silica được tổng hợp từ các chuỗi P(NIPAM/AM) trong trạng thái co ở 50°C làm chất tạo mầm cho quá trình bọc silica trong sự hiện diện của GLYMO. Kết quả thu được hạt lai P(NIPAM/AM)@silica có hình dạng, cấu trúc và tính chất tương tự P(NIPAM/AM/MBA)@silica nhưng đường kính chỉ 68,7±6,2 nm. Kết quả thu được đã mở ra tiềm năng ứng dụng của vật liệu lai giữa PNIPAM và silica trong lĩnh vực dẫn truyền thuốc.
Tài liệu tham khảo
-
[1] Gandhi A., Paul A., Sen, S.O. and Sen K.K., “Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications”, Asian J. Pharm. Sci., 10, 2015, 99-107.
[2] Kamachi Y., Bastakoti B.P., Alshehri S.M., Miyamoto N., Nakato T. and Yamauchi Y., “Thermo-responsive hydrogels containing mesoporous silica toward controlled and sustainable releases”, Mater. Lett., 168, 2016, 176-179.
[3] Cejková J., Hanuš J. and Štepánek F., “Investigation of internal microstructure and thermo-responsive properties of composite PNIPAM/silica microcapsules”, J. Colloid and Interface Sci., 346, 2010, 352–360.
[4] Lim H.L., Hwang Y., Kar M. and Varghese S., “Smart hydrogels as functional biomimetic systems”, Biomater. Sci., 2, 2014, 603–618.
[5] Schattling P., Jochuma F.D. and Theato P., “Multi-stimuli responsive polymers – the all-in-one talents”, Polym. Chem., 5, 2014, 25–36.
[6] Sierra-Martin B., Retama J.R., Laurenti M., Barbero A.F. and Cabarcos E.L., “Structure and polymer dynamics within PNIPAM-based microgel particles”, Adv. Colloid Interface Sci., 205, 2014, 113–123.
[7] López-León T., Ortega-Vinuesa J.L., Bastos-González D. and Elaissari A., “Thermally sensitive reversible microgels formed by poly(N-Isopropylacrylamide) charged chains: A Hofmeister effect study”, J. Colloid Interface Sci., 426, 2014, 300-307.
[8] Oliveira T.E., Mukherji D., Kremer K. and Netz P.A., “Effects of stereochemistry and copolymerization on the LCST of PNIPAm”, J. Chem. Phys., 146, 2017, 034904.
[9] Wei J., Li Y. and Ngai T., “Tailor-made microgel particles: Synthesis and characterization”, Colloids Surf. A: Physicochem. Eng. Asp., 489, 2016, 122–127.
[10] Kwok M.H. and Ngai T.A., “Confocal microscopy study of micron-sized poly (N-isopropylacrylamide) microgel particles at the oil–water interface and anisotopic flattening of highly swollen microgel”, J. Colloid Interface Sci., 461, 2016, 409–418.
[11] Haq M.A., Su Y. and Wang D., “Mechanical properties of PNIPAM based hydrogels: A review”, Mater. Sci. Eng. C, 70, 2017, 842–855.
[12] Abbott L.J., Tucker A.K. and Stevens M.J., “Single chain structure of a poly(N isopropylacrylamide) surfactant in water”, J. Phys. Chem. B, 119, 2015, 3837−3845.
[13] Liu K., Pan P. and Bao Y., “Synthesis, micellization, and thermally-induced macroscopic micelle aggregation of poly(vinylchloride)-g-poly(N-isopropylacrylamide) amphi philic copolymer”, R. Soc. Chem., 5, 2015, 94582–94590.
[14] Bischofberger I. and Trappe V., “New aspects in the phase behaviour of poly-N-isopropyl acrylamide: systematic temperature dependent shrinking of PNIPAM assemblies well beyond the LCST”, Sci. Rep., 5, 2015, 15520.
[15] Karg M. and Hellweg T., “New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: Properties and advances in characterization”, Curr. Opin. in Colloid Interface Sci., 14, 2009, 438–450.
[16] Nun N., Hinrichs S., Schroer M.A., Sheyfer D., Grübel G. and Fischer B., “Tuning the size of thermoresponsive poly(N-Isopropyl Acrylamide) grafted silica microgels”, Gels, 3, 2017, 34.
[17] Chen J., Liu M., Chen C., Gong H. and Gao C., “Synthesis and characterization of silica nanoparticles with well-defined thermoresponsive PNIPAM via a combination of RAFT and click chemistry”, ACS Appl. Mater. Interfaces, 3, 2011, 3215–3223.
[18] Zou H. and Schlaad H., “Thermoresponsive PNIPAM/Silica nanoparticles by direct photopolymerization in aqueous media”, J. Poly. Sci., Part A: Poly. Chem., 53, 2015, 1260–1267.
[19] Zheng Y., Wang L., Lu L., Wang Q., and Benicewicz B.C., “pH and Thermal Dual-Responsive Nanoparticles for Controlled Drug Delivery with High Loading Content”, ACS Omega, 2, 2017, 3399−3405.
[20] Cao-Luu N.H., Pham Q.T., Yao Z.H., Wang F.M., and Chern C.S., “Synthesis and characterization of PNIPAM microgel core–silica shell particles”, J. Mater. Sci., 54(10), 2019, 7503-7516.
[21] Cao-Luu N.H., Pham Q.T., Yao Z.H., Wang F.M., and Chern C.S., “Synthesis and characterization of P(N-isopropylacrylamide-co-N,N’-methylenebisacrlamide-co-acrylamide) core - silica shell nanoparticles by using reactive surfactant polyoxyethylene alkylphenyl ether ammonium sulfate”, European Polymer Journal, 120, 2019, 109263.
[22] Guillory X., Tessier A., Gratien G.O., Weiss P., Colliec-Jouault S., Dubreuil D., Lebretonc J. and Bideaua J.L., “Glycidyl alkoxysilane reactivities towards simple nucleophiles in organic media for improved molecular structure definition in hybrid materials”, RSC Adv., 6, 2016, 74087–74099.
[23] Kim D.Y., Jin S.H., Jeong S.G., Lee B., Kang K.K. and Lee C.S., “Microfuidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles”, Sci. Rep., 8, 2018, 8525.
[24] Wang X. and Gillham J.K., “Competitive primary amine/epoxy and secondary amine/epoxy reactions: effect on the isothermal time-to-vitrify”, J. App. Poly. Sci., 43, 1991, 2267-2277.
[25] Dechezelles J.F., Malik V., Crassous J.J., and Schurtenberger P., “Hybrid raspberry microgels with tunable thermoresponsive behaviour”, Soft Matter, 9, 2013, 2798–2802.
[26] Wang L., and Asher S.A., “Fabrication of silica shell photonic crystals through flexible core templates”, Chem. Mater., 21, 2009, 4608–4613.
[27] Albanese A., Tang P.S., and Chan W.C.W., “The effect of nanoparticle size, shape, and surface chemistry on biological systems”, Annu. Rev. Biomed. Eng., 14, 2012, 1– 16.
[28] Singh R., and Lillard J.W., “Nanoparticle-based targeted drug delivery”, Exp. Mol. Pathol., 86, 2009, 215–223.
[29] Sun T., Zhang Y.S., Pang B., Hyun D.C., Yang M., and Xia Y., “Engineered nanoparticles for drug delivery in cancer therapy”, Angew. Chem. Int. Ed., 53, 2014, 12320– 12364.
[30] Loomis K., McNeeley K., and Bellamkonda R.V., “Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications”, Soft Matter, 7, 2011, 839–856.
[31] Faraji A.H., and Wipf P., “Nanoparticles in cellular drug delivery”, Bioorg. Med. Chem., 17, 2009, 2950–2962.
[32] Danaei M., Dehghankhold M., Ataei S., Davarani F.H., Javanmard R., Dokhani A., Khorasani S., and Mozafari M.R., “Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems”, Pharmaceutics, 10, 2018, 57–74.
[33] Chou L.Y.T., Ming K., and Chan W.C.W., “Strategies for the intracellular delivery of nanoparticles”, Chem. Soc. Rev., 40, 2011, 233–245.
[34] Cai Z., Wang Y., Zhu L.J., and Liu Z.Q., “Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs”, Curr. Drug Metab., 11, 2010, 197–207.
[35] Schonhoff M., Larsson A., Welzel P.B. and Kuckling D., “Thermoreversible polymers adsorbed to colloidal Silica: a 1HNMR and DSC study of the phase transition in confined geometry”, J. Phys. Chem. B, 106, 2002, 7725–7728.
[36] Godnjavec J., Znoj B., Vince J., Steinbucher M., Znidarsic A. and Venturini P., “Stabilization of rutile TiO2 nanoparticles with GLYMO in polyacrylic clear coating”, Mater. Tech., 46(1), 2012, 19–24.
[37] Park J.H., Lee Y.H. and Oh S.G., “Preparation of thermosensitive PNIPAm-grafted mesoporous silica particles”, Macromol. Chem. Phys., 208, 2007, 2419–2427.
[38] Hu X., Hao X., Wu Y., Zhang J., Zhang X., Wang P.C., Zou G. and Liang X.J., “Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dually response”, J. Mater. Chem. B Mater. Biol. Med., 1, 2013, 1109–1118.
[39] Jadhav S.A., Brunella V., Miletto I., Berlier G. and Scalarone D., “Synthesis of poly(N-isopropylacrylamide) by distillation precipitation polymerization and quantitative grafting on mesoporous silica”, J App. Poly. Sci., 133, 2016, 44181-44189.
[40] Cai T., Yang Z., Li H., Yang H., Li A. and Cheng R., “Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency”, Cellulose, 20, 2013, 2605–2614.
[41] Tinio J.V.G., Simfroso K.T., Peguit A.D.M.V. and Candidato R.T.Jr., “Influence of OH – Ion concentration pn the surface morphology of ZnO-SiO2 nanostructure”, J. Nanotechnol., 1, 2015, 1-7.
Xem thêm
Ẩn bớt
##plugins.themes.academic_pro.article.sidebar##
Đã Xuất bản
Nov 30, 2020
Download
Cách trích dẫn
Cao Luu Ngoc Hanh, Nguyen Thi Bich Thuyen, Luong Huynh Vu Thanh, Doan Van Hong Thien, Ngo Truong Ngoc Mai. “Tổng hợp hạt Lai nhạy nhiệt từ poly(N-Isopropylacrylamide) Và Silica”. Tạp Chí Khoa học Và Công nghệ - Đại học Đà Nẵng, vol 18, số p.h 11, Tháng Mười-Một 2020, tr 33-38, https://jst-ud.vn/jst-ud/article/view/3522.