Chế tạo hạt cacbon nanô theo hướng tiếp cận xanh bằng phương pháp thủy nhiệt
##plugins.themes.academic_pro.article.main##
Author
-
Trần Thị Thanh Nhàn, Phan Thị Kim Uyên, Nguyễn Quý Tuấn, Ngô Khoa Quang, Đặng Ngọc Toàn, Đoàn Văn Dương, Trịnh Ngọc Đạt, Phan Liễn, Đinh Thanh Khẩn, Lê Văn Thanh Sơn, Lê Vũ Trường Sơn
Từ khóa:
Tóm tắt
Hạt cacbon nanô (CNPs) là vật liệu mới thân thiện với môi trường và có tính ứng dụng rộng rãi trong đời sống và kỹ thuật. Trong nghiên cứu này, CNPs phát quang màu đỏ đã được chế tạo bằng phương pháp thủy nhiệt từ rau cải chân vịt (spinach). Cấu trúc của CNPs được nghiên cứu thông qua phép đo nhiễu xạ tia X, trong khi các đặc trưng quang học của chúng được nghiên cứu thông qua các phép đo phổ hấp thụ UV-Vis, kích thích và phát quang. Các kết quả thu được cho thấy, vật liệu CNPs đã được chế tạo thành công. Phổ phát quang có dạng phổ đám (từ 600 nm đến 750 nm) và cường độ phát quang thay đổi theo bước sóng kích thích nhưng hình dạng phổ không thay đổi. Hiệu suất lượng tử xấp xỉ 18,3%. Ngoài ra, sự suy giảm theo thời gian của cường độ phát quang của CNPs cũng đã được nghiên cứu và kết quả chỉ ra rằng CNPs có độ suy hao thấp.
Tài liệu tham khảo
-
[1] Xiaoyou Xu, Robert Ray, Yunlong Gu, Harry J. Ploehn, Latha Gearheart, Kyle Raker, and Walter A. Scrivens, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments”, J Am Chem Soc 126(40): 2004, pp.12736-12737.
[2] Jie Shen, Shaoming Shang, Xiuying Chen, Dan Wang, Yan Cai, “Facile Synthesis of Fluorescence Carbon Dots from Sweet Potato for Fe3+ sensing and cell imaging”, Materials Science and Engineering C vol.76, 2017, pp.856-864.
[3] Fu Wang, Yong-hua Chen, Chun-yan Liu and Dong-ge Ma, “White light-emitting devices based on carbon dots electroluminescence”, Chemical Communications, vol.47, 2011, pp. 3502-3504.
[4] Xiaohui Wang, Konggang Qu, Xu Bailu, Jinsong Ren, and Xiaogang Qu, “Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents”, Journal of Materials Chemistry, vol.21 (8), 2011, pp. 2445-2450.
[5] Li Cao, Xin Wang, Mohammed J, Meziani, Fushen Lu, Haifang Wang, Pengju G. Luo, Yi Lim, Barbara A. Harruff, L. Monica Veca, Davoy Murray, Su-Yuan Xie, and Ya-Ping Sun, “Carbon Dots for Multiphoton Bioimaging”, Journal of the American Chemical Society, vol. 129, 2007, pp. 11318-11319.
[6] Liu LiQin, Li YuanFang, Zhan Lei, Liu Yue, and Huang ChengZhi, “One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions”, Science China Chemistry, vol.54, No.8, 2011, pp. 1342-1347.
[7] Sun, Y.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. “Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence”,
[8] J. Am. Chem. Soc. Vol.128, 2006, pp.7756-7757.
[9] Liu, M.; Xu, Y.; Niu, F.; Gooding, J.J.; Liu, J., “Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging”, Analyst, 2016, Vol. 141, pp.2657–2664.
[10] Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments”, J. Am. Chem. Soc. Vol.126, 2004, pp. 12736–12737.
[11] Sciortino, A.; Cayuela, A.; Soriano, M.L.; Gelardi, F.M.; Cannas, M.; Valcarcel, M.; Messina, F, “Different natures of surface electronic transitions of carbon nanoparticles”. Phys. Chem. Vol. 19, 2017, pp. 22670–22677.
[12] Qu, S.; Wang, X.; Lu, Q.; Liu, X.; Wang, L. “A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots”, Angew. Chem. Int. Ed. Vol. 51, 2012, pp. 12215–12218.
[13] Sui, L.; Jin, W.; Li, S.; Liu, D.; Jiang, Y.; Chen, A.; Liu, H.; Shi, Y.; Ding, D.; Jin, M, “Ultrafast carrier dynamics of carbon nanodots in different pH environments”, Phys. Chem. Vol. 18, 2016, pp. 3838–3845.
[14] Xiaokai Xu, Lieng Cai, Guanggi Hu, Luoqi Mo, Yihao Zheng, Chaofan Hu, Bingfu Lei, Xuejie Zhang, Yingliang Liu, Jianle Zhuang, “Red-emissive carbon dots from spinach: Characterization and application in visual detection of time”, Journal of luminescence, Vol. 227, 2020, pp. 117534.
[15] S. Liu, J.Q. Tian, L. Wang, Y.W. Zhang, X.Y. Qin, Y.L. Luo, A.M. Asiri, A.O. Alyoubi, X.P. Sun, “Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions”, Adv. Mater. Vol. 24, 2012, pp. 2037–2041.
[16] H. Xu, X.P. Yang, G. Li, C. Zhao, X.J. Liao, “Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples”, J. Agric. Food Chem. Vol. 63, 2015, pp. 6707–6714.
[17] Y.J. Feng, D. Zhong, H. Miao, X.M. Yang, “Carbon dots derived from rose flowers for tetracycline sensing”, Talanta Vol. 140, 2015, pp. 128–133.
[18] A. Sachdev, P. Gopinath, “Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents”, Analyst, Vol. 140, 2015, pp. 4260–4269.
[19] Liping Li, Ruiping Zhang, Chunxiang Lu, Jinghua Sun, Lingjie Wang, Botao Qu, Tingting Li, Yaodong Liu, Sijin Li, “In situ synthesis of NIR-Light emission carbon dots derived from spinach for bio-imaging application”, Journal of Materials Chemistry B, 2017, pp. 1-7.
[20] Michikazu Hara, Takemi Yoshida, Atsushi Takagaki, Tsuyoshi Takata, Junko N. Kondo, Shigenohu Hayashi, Kazunari Domen, “A Carbon Material as a Strong Protonic Acid”, Angew.Chem, Vol. 43, 2004, pp. 2955-2958.
[21] W. Li, Z. Yue, C. Wang, W. Zhang and G. Liu, “An absolutely green approach to fabricate carbon nanodots from soya bean grounds”, RSC Adv., Vol. 3, 2013, pp. 20662-20665.
[22] R. Vikneswaran, S. Ramesh and R. Yahya, “Green synthesized carbon nanodots as a fluorescent probe for selective and sensitive detection of iron (III) ions”, Mater. Lett., Vol. 136, 2014, pp. 179 –182.
[23] Liang Wang a, Weitao Li a, Bin Wu b, Zhen Li c, Shilong Wang b, Yuan Liu a, Dengyu Pana, Minghong Wu, Wang et al, “Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing”, Chemical Engineering Journal, Vol. 300, 2016, pp. 75–82.
[24] Lu, S., Guo, S., Xu, P., Li, X., Zhao, Y., Gu, W., Xue, M., “Hydrothermal synthesis of nitrogen-doped carbon dots with real-time live-cell imaging and blood–brain barrier penetration capabilities”. Int. J. Nanomed. Vol.11, 2016, pp. 6325-6336.
[25] Chengzhou Zhu, Junfeng Zhai and Shaojun Don, “Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction”. Chem. Commun., Vol. 48, 2012, pp. 9367–9369.
[26] Wenbo Lu, Xiaoyun Qin, Sen Liu, Guohui Chang, Yingwei Zhang, Yonglan Luo, “Economical, Green Synthesis of Fluorescent Carbon Nanoparticlesand Their Use as Probes for Sensitive and Selective Detection of Mercury (II) Ions”. Anal. Chem. Vol. 84, 2012, pp. 5351−5357.
[27] Tianxiang Zhang, Jinyang Zhu, Yue Zhai, He Wang, Xue Bai, Biao Dong, Halyu Wang, Hongwei Song, “A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission”, Nanoscale, 2017, 1-9.
[28] P. Namdaria, B. Negahdarib and A. Eatemadi, Biomed. Pharmacother. 87, 209 (2017).
[29] N. Yang, X. Jiang and D. W. Pang, Carbon Nanoparticles and Nanostructures, (Springer, Switzerland, 2016).
[30] Hui Ding, Xue-Hua Li, Xiao-Bo Chen, Ji-Shi Wei, Xiao-Bing Li, and Huan-Ming Xiong, “Surface states of carbon dots and their influences on luminescence”. J. Appl. Phys. 127, 231101 (2020).
[31] Albert M. Brouwer, “Standards for photoluminescence quantum yield measurements in solution”, Pure Appl. Chem, Vol. 83, No. 12, 2011, pp. 2213–2228.
[32] Michael W. Allen, Thermo Fisher Scientific, Madison, WI, USA, “Measurement of Fluorescence Quantum Yields”, Technical Note: 52019.