Degradation of chlothianidin from Dantutso 50WG in electrochemical process: Kinetics and role of reactive species
##plugins.themes.academic_pro.article.main##
Author
-
Hoang Nguyen TienThe University of Danang - University of Science and Education
Từ khóa:
Tóm tắt
The kinetic degradation of clothianidin (CLO) (in Dantuso 50 WG) during electrochemical oxidation (EO) process using sulfate- and chloride-supporting electrolytes was comprehensively investigated. The degradation of CLO was not due to direct electron oxidation, but was mainly due to •OH and other radicals generated from supporting electrolytes. The degradation of CLO was significantly inhibited when increasing the concentration of nitrobenzene (NB), methanol (MeOH) and benzoic acid (BA). The second-order rate constant of •OH toward CLO was determined to be 3.23×109 M-1 s-1 using competition kinetics method. When SO42- and Cl- were used as supporting electrolytes, the degradation of CLO by •OH was the same with kCLO = 0.0084 min-1. Meanwhile, the higher removal of CLO in SO42--supporting electrolyte was due to the contribution of (SO4•-/S2O82-) more than that of (Cl•/HClO/ClO-).
Tài liệu tham khảo
-
[1] Guziejewski, S. Skrzypek, and W. Ciesielski, “Application of Catalytic Hydrogen Evolution in the Presence of Neonicotinoid Insecticide Clothianidin”, Food Anal. Methods, vol. 5, no. 3, pp. 373–380, Jun. 2012, doi: 10.1007/s12161-011-9253-x.
[2] Pietrzak, K. Wątor, D. Pękała, J. Wójcik, A. Chochorek, E. Kmiecik , and J. Kania, “LC-MS/MS method validation for determination of selected neonicotinoids in groundwater for the purpose of a column experiment”, J. Environ. Sci. Heal. Part B, vol. 54, no. 5, pp. 424–431, May 2019, doi: 10.1080/03601234.2019.1574173.
[3] Goulson, “REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides”, J. Appl. Ecol., vol. 50, no. 4, pp. 977–987, Aug. 2013, doi: 10.1111/1365-2664.12111.
[4] W. Matzek, M.J. Tipton, A.T. Farmer, A.D. Steen, and K.E. Carter, “Understanding Electrochemically Activated Persulfate and Its Application to Ciprofloxacin Abatement”, Environ. Sci. Technol., vol. 52, no. 10, pp. 5875–5883, May 2018, doi: 10.1021/acs.est.8b00015.
[5] Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, and M. Panizza, “Electrochemical advanced oxidation processes: today and tomorrow. A review”, Environ. Sci. Pollut. Res., vol. 21, no. 14, pp. 8336–8367, Jul. 2014, doi: 10.1007/s11356-014-2783-1.
[6] Radjenovic and M. Petrovic, “Sulfate-mediated electrooxidation of X-ray contrast media on boron-doped diamond anode”, Water Res., vol. 94, pp. 128–135, May 2016, doi: 10.1016/j.watres.2016.02.045.
[7] T. Hoang, X.C. Nguyen, P.-C. Le, T. Juzsakova, S.W. Chang, and D. D. Nguyen, “Electrochemical degradation of pesticide Padan 95SP by boron-doped diamond electrodes: The role of operating parameters”, J. Environ. Chem. Eng., vol. 9, no. 3, p. 105205, Jun. 2021, doi: 10.1016/j.jece.2021.105205.
[8] Liang, C.F. Huang, N. Mohanty, and R. M. Kurakalva, “A rapid spectrophotometric determination of persulfate anion in ISCO”, Chemosphere, vol. 73, no. 9, pp. 1540–1543, Nov. 2008, doi: 10.1016/j.chemosphere.2008.08.043.
[9] APHA-AWWA-WEF, “Standard Methods for the Examination of Water and Wastewater, Washington DC, American Public Health Association/ American Water Works Association/Water Environment Federation”, 2012.
[10] Zhang, Z. Sun, and J. Cui, “Research on the mechanism and reaction conditions of electrochemical preparation of persulfate in a split-cell reactor using BDD anode”, RSC Adv., vol. 10, no. 56, pp. 33928–33936, 2020, doi: 10.1039/D0RA04669H.
[11] Cai, M. Zhou, Y. Pan, X. Du, and X. Lu, “Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode”, Appl. Catal. B Environ., vol. 257, p. 117902, Nov. 2019, doi: 10.1016/j.apcatb.2019.117902.
[12] T. Hoang and R. Holze, “Degradation of pesticide Cartap in Padan 95SP by combined advanced oxidation and electro-Fenton process”, J. Solid State Electrochem., vol. 25, no. 1, pp. 73–84, Jan. 2021, doi: 10.1007/s10008-020-04581-7.
[13] Zhang, L. Liu, J. Wang, F. Rong, and D. Fu, “Electrochemical degradation of ethidium bromide using boron-doped diamond electrode”, Sep. Purif. Technol., vol. 107, pp. 91–101, Apr. 2013, doi: 10.1016/j.seppur.2013.01.033.
[14] Panizza and G. Cerisola, “Direct And Mediated Anodic Oxidation of Organic Pollutants”, Chem. Rev., vol. 109, no. 12,
pp. 6541–6569, Dec. 2009, doi: 10.1021/cr9001319.
[15] Guzzella, D. Feretti, and S. Monarca, “Advanced oxidation and adsorption technologies for organic micropollutant removal from lake water used as drinking-water supply”, Water Res., vol. 36, no. 17, pp. 4307–4318, Oct. 2002, doi: 10.1016/S0043-1354(02)00145-8.
[16] V. Buxton, C.L. Greenstock, W.P. Helman, and A.B. Ross, “Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution”, J. Phys. Chem. Ref. Data, vol. 17, no. 2, pp. 513–886, Apr. 1988, doi: 10.1063/1.555805.
[17] Xie, J. Ma, W. Liu, J. Zou, S. Yue, X. Li, M. R.Wiesner, and J. Fang, “Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals”, Water Res., vol. 69, pp. 223–233, Feb. 2015, doi: 10.1016/j.watres.2014.11.029.
[18] -L. Wang, Q.-Y. Wu, N. Huang, T. Wang, and H.-Y. Hu, “Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species”, Water Res., vol. 98, pp. 190–198, Jul. 2016, doi: 10.1016/j.watres.2016.04.015.
[19] Ji, Y. Shi, L. Wang, and J. Lu, “Denitration and renitration processes in sulfate radical-mediated degradation of nitrobenzene”, Chem. Eng. J., vol. 315, pp. 591–597, May 2017, doi: 10.1016/j.cej.2017.01.071.
[20] Radjenovic and M. Petrovic, “Removal of sulfamethoxazole by electrochemically activated sulfate: Implications of chloride addition”, J. Hazard. Mater., vol. 333, pp. 242–249, Jul. 2017, doi: 10.1016/j.jhazmat.2017.03.040.
[21] Lian, B. Yao, S. Hou, J. Fang, S. Yan, and W. Song, “Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents”, Environ. Sci. Technol., vol. 51, no. 5, pp. 2954–2962, Mar. 2017, doi: 10.1021/acs.est.6b05536.
[22] Xiang, Y. Shao, N. Gao, X. Lu, N. An, and W. Chu, “Removal of β-cyclocitral by UV/persulfate and UV/chlorine process: Degradation kinetics and DBPs formation”, Chem. Eng. J., vol. 382, p. 122659, Feb. 2020, doi: 10.1016/j.cej.2019.122659.
[23] Li, T. Jain, K. Ishida, and H. Liu, “A mechanistic understanding of the degradation of trace organic contaminants by UV/hydrogen peroxide, UV/persulfate and UV/free chlorine for water reuse”, Environ. Sci. Water Res. Technol., vol. 3, no. 1, pp. 128–138, 2017, doi: 10.1039/C6EW00242K.
[24] T. Hoang, “Định lượng gốc• OH tạo ra trong quá trình điện hóa: Ảnh hưởng của điện cực làm việc và mật độ dòng”, Tạp chí Khoa học và Công nghệ - Đại học Đà Nẵng, vol. 19, No. 11, pp. 46–51, 2021.
[25] A.M.Cruz, A. Fernandes , L. Ciríaco, M. J. Pacheco, F. Carvalho, A. Afonso, L. Madeira, S. Luz and A. Lopes, “Electrochemical Oxidation of Effluents from Food Processing Industries: A Short Review and a Case-Study”, Water, vol. 12, no. 12, p. 3546, Dec. 2020, doi: 10.3390/w12123546