Động học và cơ chế phân hủy thuốc trừ sâu Cartap bằng hệ xúc tác UV/Persulfate: Vai trò gốc oxy hóa
##plugins.themes.academic_pro.article.main##
Author
-
Nguyễn Tiên HoàngTrường Đại học Sư phạm - Đại học Đà Nẵng
Từ khóa:
Tóm tắt
Trong nghiên cứu này, tác giả đã áp dụng hệ xúc tác UV/PS vào quá trình phân hủy Cartap và nghiên cứu vai trò đóng góp của tác nhân oxy hóa đối với Cartap. Hệ xúc tác quang hóa UV/PS làm tăng đáng kể tốc độ phân hủy của Cartap khi so sánh với quá trình UV hay PS riêng lẻ. Kết quả này là do sự tạo ra các tác nhân oxy hóa mạnh (•OH và SO4•-), chính tác nhân này làm gia tăng tốc độ phân hủy Cartap trong hệ UV/PS. Nghiên cứu đã tính toán được hằng số tốc độ phản ứng bậc hai của •OH và SO4•- đối với Cartap: = 2,5×109 M-1·s-1 và = 1,3×109 M-1·s-1. Quá trình phân hủy Cartap trong UV/PS bị ức chế bởi sự có mặt của Cl-, CO32-, axit humic. Trong đó, sự có mặt ion Cl- ít gây ức chế quá trình nhất (kCT giảm 25% ở 100 mM Cl-). Trong khi CO32-, axit humic ảnh hưởng mạnh mẽ đến quá trình phân hủy Cartap: kCT giảm lần lượt 80% và 76% tại 100 mM CO32- và 3 mgcL-1.
Tài liệu tham khảo
-
[1] A. Tsaboula, E.-N. Papadakis, Z. Vryzas, A. Kotopoulou, K. Kintzikoglou, and E. Papadopoulou-Mourkidou, “Environmental and human risk hierarchy of pesticides: A prioritization method, based on monitoring, hazard assessment and environmental fate”, Environ. Int., vol. 91, pp. 78–93, May 2016, doi: 10.1016/j.envint.2016.02.008.
[2] F. Qi, W. Chu, and B. Xu, “Comparison of phenacetin degradation in aqueous solutions by catalytic ozonation with CuFe 2 O 4 and its precursor: Surface properties, intermediates and reaction mechanisms”, Chem. Eng. J., vol. 284, pp. 28–36, Jan. 2016, doi: 10.1016/j.cej.2015.07.095.
[3] A. Borgeat, C. Ofner, A. Saporito, M. Farshad, and J. Aguirre, “The effect of nonsteroidal anti-inflammatory drugs on bone healing in humans: A qualitative, systematic review”, J. Clin. Anesth., vol. 49, pp. 92–100, Sep. 2018, doi: 10.1016/j.jclinane.2018.06.020.
[4] G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O − in Aqueous Solution”, J. Phys. Chem. Ref. Data, vol. 17, no. 2, pp. 513–886, Apr. 1988, doi: 10.1063/1.555805.
[5] P. Neta, V. Madhavan, H. Zemel, and R. W. Fessenden, “Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds”, J. Am. Chem. Soc., vol. 99, no. 1, pp. 163–164, Jan. 1977, doi: 10.1021/ja00443a030.
[6] C. Tan, X. Jian, H. Wu, T. Sheng, K. Sun, and H. Gao, “Kinetics degradation of phenacetin by solar activated persulfate system”, Sep. Purif. Technol., vol. 256, p. 117851, Feb. 2021, doi: 10.1016/j.seppur.2020.117851.
[7] P. Wardman, “ChemInform Abstract: Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution”, ChemInform, vol. 21, no. 39, Sep. 1990, doi: 10.1002/chin.199039346.
[8] K. Zhang and K. M. Parker, “Halogen Radical Oxidants in Natural and Engineered Aquatic Systems”, Environ. Sci. Technol., vol. 52, no. 17, pp. 9579–9594, Sep. 2018, doi: 10.1021/acs.est.8b02219.
[9] R. Yuan, L. Hu, P. Yu, Z. Wang, H. Wang, and J. Fang, “Co3O4 nanocrystals/3D nitrogen-doped graphene aerogel: A synergistic hybrid for peroxymonosulfate activation toward the degradation of organic pollutants”, Chemosphere, vol. 210, pp. 877–888, Nov. 2018, doi: 10.1016/j.chemosphere.2018.07.065.
[10] S.-J. Lee, P. Caboni, M. Tomizawa, and J. E. Casida, “Cartap Hydrolysis Relative to Its Action at the Insect Nicotinic Channel”, J. Agric. Food Chem., vol. 52, no. 1, pp. 95–98, Jan. 2004, doi: 10.1021/jf0306340.
[11] N. T. Hoang, X. C. Nguyen, P.-C. Le, T. Juzsakova, S. W. Chang, and D. D. Nguyen, “Electrochemical degradation of pesticide Padan 95SP by boron-doped diamond electrodes: The role of operating parameters”, J. Environ. Chem. Eng., vol. 9, no. 3, p. 105205, Jun. 2021, doi: 10.1016/j.jece.2021.105205.
[12] C. Liang, C.-F. Huang, N. Mohanty, and R. M. Kurakalva, “A rapid spectrophotometric determination of persulfate anion in ISCO”, Chemosphere, vol. 73, no. 9, pp. 1540–1543, Nov. 2008, doi: 10.1016/j.chemosphere.2008.08.043.
[13] W. Li, S. Patton, J. M. Gleason, S. P. Mezyk, K. P. Ishida, and H. Liu, “UV Photolysis of Chloramine and Persulfate for 1,4-Dioxane Removal in Reverse-Osmosis Permeate for Potable Water Reuse”, Environ. Sci. Technol., vol. 52, no. 11, pp. 6417–6425, Jun. 2018, doi: 10.1021/acs.est.7b06042.
[14] Y. Ji, Y. Shi, L. Wang, and J. Lu, “Denitration and renitration processes in sulfate radical-mediated degradation of nitrobenzene”, Chem. Eng. J., vol. 315, pp. 591–597, May 2017, doi: 10.1016/j.cej.2017.01.071.
[15] L. Lian, B. Yao, S. Hou, J. Fang, S. Yan, and W. Song, “Kinetic Study of Hydroxyl and Sulfate Radical-Mediated Oxidation of Pharmaceuticals in Wastewater Effluents”, Environ. Sci. Technol., vol. 51, no. 5, pp. 2954–2962, Mar. 2017, doi: 10.1021/acs.est.6b05536.
[16] K. Guo et al., “Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements”, Water Res., vol. 147, pp. 184–194, Dec. 2018, doi: 10.1016/j.watres.2018.08.048.
[17] W. Li, T. Jain, K. Ishida, and H. Liu, “A mechanistic understanding of the degradation of trace organic contaminants by UV/hydrogen peroxide, UV/persulfate and UV/free chlorine for water reuse”, Environ. Sci. Water Res. Technol., vol. 3, no. 1, pp. 128–138, 2017, doi: 10.1039/C6EW00242K.
[18] D. Wen, W. Li, J. Lv, Z. Qiang, and M. Li, “Methylene blue degradation by the VUV/UV/persulfate process: Effect of pH on the roles of photolysis and oxidation”, J. Hazard. Mater., vol. 391, p. 121855, Jun. 2020, doi: 10.1016/j.jhazmat.2019.121855.
[19] C. Liang, Z.-S. Wang, and C. J. Bruell, “Influence of pH on persulfate oxidation of TCE at ambient temperatures”, Chemosphere, vol. 66, no. 1, pp. 106–113, Jan. 2007, doi: 10.1016/j.chemosphere.2006.05.026.
[20] C. Liang and H.-W. Su, “Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate”, Ind. Eng. Chem. Res., vol. 48, no. 11, pp. 5558–5562, Jun. 2009, doi: 10.1021/ie9002848.
[21] Y. Gao, J. Zhou, J. Zhang, C. Li, N. Gao, and D. Yin, “Factors affecting UV/persulfate treatment of phenacetin and its disinfection byproduct formation potential”, Sep. Purif. Technol., vol. 256, p. 117819, Feb. 2021, doi: 10.1016/j.seppur.2020.117819.
[22] J. R. Rumble, “NIST Standard Reference Database 40: NDRL/NIST Solutions Kinetics Database V. 3.0, Gaithersburg, MD.”
[23] E. Appiani, S. E. Page, and K. McNeill, “On the Use of Hydroxyl Radical Kinetics to Assess the Number-Average Molecular Weight of Dissolved Organic Matter”, Environ. Sci. Technol., vol. 48, no. 20, pp. 11794–11802, Oct. 2014, doi: 10.1021/es5021873.
[24] F. Minisci, A. Citterio, and C. Giordano, “Electron-transfer processes: peroxydisulfate, a useful and versatile reagent in organic chemistry”, Acc. Chem. Res., vol. 16, no. 1, pp. 27–32, Jan. 1983, doi: 10.1021/ar00085a005.
[25] Y. Lei, J. Lu, M. Zhu, J. Xie, S. Peng, and C. Zhu, “Radical chemistry of diethyl phthalate oxidation via UV/peroxymonosulfate process: Roles of primary and secondary radicals”, Chem. Eng. J., vol. 379, p. 122339, Jan. 2020, doi: 10.1016/j.cej.2019.122339.
[26] D. M. Bulman, S. P. Mezyk, and C. K. Remucal, “The Impact of pH and Irradiation Wavelength on the Production of Reactive Oxidants during Chlorine Photolysis”, Environ. Sci. Technol., vol. 53, no. 8, pp. 4450–4459, Apr. 2019, doi: 10.1021/acs.est.8b07225.
[27] M. Li et al., “Theoretical investigation on the contribution of HO, SO4- and CO3- radicals to the degradation of phenacetin in water: Mechanisms, kinetics, and toxicity evaluation”, Ecotoxicol. Environ. Saf., vol. 204, p. 110977, Nov. 2020, doi: 10.1016/j.ecoenv.2020.110977.
[28] Z. Wu et al., “Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways”, Water Res., vol. 104, pp. 272–282, Nov. 2016, doi: 10.1016/j.watres.2016.08.011.
[29] Y. Yang, J. J. Pignatello, J. Ma, and W. A. Mitch, “Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced Oxidation Processes (AOPs)”, Environ. Sci. Technol., vol. 48, no. 4, pp. 2344–2351, Feb. 2014, doi: 10.1021/es404118q.
[30] M. Xu et al., “Comparison of UVC and UVC/persulfate processes for tetracycline removal in water”, Chem. Eng. J., vol. 384, p. 123320, Mar. 2020, doi: 10.1016/j.cej.2019.123320.
[31] H. Xiang et al., “Degradation of diuron by chlorination and UV/chlorine process: Degradation kinetics and the formation of disinfection by-products”, Sep. Purif. Technol., vol. 202, pp. 365–372, Aug. 2018, doi: 10.1016/j.seppur.2018.03.073.