Động học phân hủy xanh methylen trong quá trình UV/chlorine và quá trình nâng cao hiệu suất
##plugins.themes.academic_pro.article.main##
Author
-
Nguyễn Tiên HoàngTrường Đại học Sư phạm - Đại học Đà Nẵng, Đà Nẵng, Việt NamHạ Đình TháiTrường Đại học Công nghiệp Việt Trì, Phú Thọ, Việt NamMinh Thị ThảoTrường Đại học Công nghiệp Việt Trì, Phú Thọ, Việt Nam
Từ khóa:
Tóm tắt
Nghiên cứu đã khảo sát động học phân hủy của xanh metylen (MB) trong quá trình UV/chlorine và sự kết hợp của nó với các quá trình điện hóa (EC) và hấp phụ bởi rGO (graphene oxide dạng khử). Trong quá trình này, gốc hydroxyl (•OH) và các gốc clo phản ứng (RCS: Cl•, ClO•,…) là các gốc oxy hóa chính, chiếm tổng thể trên 85% vào sự phân hủy MB ở pH 7. Tốc độ phân hủy bậc 1 của MB tăng lên khi tăng liều lượng NaOCl và tăng công suất đèn. Sự có mặt của các ion trong dung dịch nước ảnh hưởng đến tốc độ phân hủy khác nhau của MB và kMB được xếp theo thứ tự sau: kMB (trong HA) < kMB (trong NO3-) < kMB (trong SO42-) < kMB trong Fe2+) < kMB (trong HCO3-). Trong quá trình kết hợp UV/chlorine với các quá trình oxy hóa nâng cao khác, hiệu suất phân hủy MB được cải thiện đáng kể. Các sản phẩm trung gian trong quá trình phân hủy MB trong UV/chlorine cũng được xác định.
Tài liệu tham khảo
-
[1] D. Wen, W. Li, J. Lv, Z. Qiang, and M. Li, “Methylene blue degradation by the VUV/UV/persulfate process: Effect of pH on the roles of photolysis and oxidation”, Hazard. Mater. Vol. 391, p. 121855, 2020.
[2] T.M. Huong, B.L. Liu, W.S. Chai, P.L.Show, S.L. Tsai, and Y.K. Chang, “Highly efficient dye removal and lysozyme purification using strong and weak cation-exchange nanofiber membranes,” Int. J. Biol. Macromol. Vol. 165, pp. 1410–1421, 2020.
[3] Yu, M. Kamali, P. Van Aken, L. Appels, B. Van der Bruggen, and R. Dewil, “Synergistic effects of the combined use of ozone and sodium percarbonate for the oxidative degradation of dichlorvos”, J. Water Process Eng. Vol. 39, p. 101721, 2021.
[4] H. Cheng et al., “Removal of protein wastes by cylinder-shaped NaY zeolite adsorbents decorated with heavy metal wastes”, Int. J. Biol. Macromol. Vol. 185, pp. 761–772, 2021.
[5] X. Lee et al., “Removal of calcium ions from aqueous solution by bovine serum albumin (BSA)-modified nanofiber membrane: Dynamic adsorption performance and breakthrough analysis”, Biochem. Eng. J. Vol. 171, p. 108016, 2021.
[6] Sun, D. Xu, P. Dai, X. Liu, F. Tan, and Q. Guo, “Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate activator”, Chem. Eng. J. Vol. 402, p. 125881, 2020.
[7] Zhang, S. Cheng, H. Xi, L. Zhang, J. Zhou, C. Li, J. Shu, and X. Jiang, “Paracetamol Degradation Performance and Mechanisms Using Microwave-Assisted Heat-Activated Persulfate in Solutions”, Water, Air, Soil Pollut. Vol. 230, no. 12, p. 271, 2019.
[8] Li, N. Han et al., “Perovskite oxide for emerging photo(electro)catalysis in energy and environment”, Environ. Res. Vol. 205, p. 112544, 2022.
[9] T. Hoang et al., “Kinetic study on methylene blue removal from aqueous solution using UV/chlorine process and its combination with other advanced oxidation processes,” Chemosphere, vol 309, Part 3, p. 136457, 2022.
[10] Li et al., “Factor affecting the role of radicals contribution at different wavelengths, degradation pathways and toxicity during UV-LED/chlorine process”, Chem. Eng. J. Vol. 392, p. 124552, 2020.
[11] Fang, Y. Fu, and C. Shang, “The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System”, Environ. Sci. Technol. Vol. 48, no. 3, pp. 1859–1868, 2014.
[12] W. Cai et al., “Degradation of climbazole by UV/chlorine process: Kinetics, transformation pathway and toxicity evaluation”, Chemosphere, Vol. 219, pp. 243–249, 2019.
[13] Wang et al., “Fabrication of Fe-TiO2-NTs/SnO2-Sb-Ce electrode for electrochemical degradation of aniline”, Sep. Purif. Technol. Vol. 268, p. 118591, 2021.
[14] Cheng et al., “Photochemical oxidation of PPCPs using a combination of solar irradiation and free available chlorine”, Sci. Total Environ. Vol. 682, pp. 629–638, 2019.
[15] Guo et al., “Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements”, Water Res. Vol. 147, pp. 184–194, 2018.
[16] T. Hoang et al., “Degradation of dyes by UV/Persulfate and comparison with other UV-based advanced oxidation processes: Kinetics and role of radicals”, Chemosphere, Vol. 298, p. 134197, 2022.
[17] N. Bui and T.T. Minh, “Investigation of TNT red wastewater treatment technology using the combination of advanced oxidation processes”, Sci. Total Environ. Vol. 756, p. 143852, 2021.
[18] T. Hoang and R. Holze, “Degradation of pesticide Cartap in Padan 95SP by combined advanced oxidation and electro-Fenton process,” J. Solid State Electrochem., Vol. 25, no. 1, pp. 73–84, 2021.
[19] X. Lu et al., “Investigation of clofibric acid removal by UV/persulfate and UV/chlorine processes: Kinetics and formation of disinfection byproducts during subsequent chlor(am)ination”, Chem. Eng. J., vol. 331, pp. 364-371, 2018.
[20] Xiang, Y. Shao, N. Gao, X. Lu, N. An, and W. Chu, “Removal of β-cyclocitral by UV/persulfate and UV/chlorine process: Degradation kinetics and DBPs formation”, Chem. Eng. J., Vol. 382, p. 122659, 2020.
[21] Li, T. Jain, K. Ishida, and H. Liu, “A mechanistic understanding of the degradation of trace organic contaminants by UV/hydrogen peroxide, UV/persulfate and UV/free chlorine for water reuse”, Environ. Sci. Water Res. Technol. Vol. 3, no. 1, pp. 128–138, 2017.
[22] Ma, L. Tang, J. Deng, Z. Liu, X. Li, P. Wang, and Q. Li, “Removal of saccharin by UV/persulfate process: Degradation kinetics, mechanism and DBPs formation”, J. Photochem. Photobiol. A Chem. Vol. 420, p. 113482, 2021.
[23] Wang et al., “Degradation kinetics and mechanism of 2,4-Di-tert-butylphenol with UV/persulfate”, Chem. Eng. J. Vol. 304, pp. 201–208, 2016.
[24] Xu, J. Deng, A. Cai, X. Ma, J. Li, Q. Li, and X. Li, “Comparison of UVC and UVC/persulfate processes for tetracycline removal in water”, Chem. Eng. J., Vol. 384, p. 123320, 2020.
[25] Nikravesh, A. Shomalnasab, A. Nayyer, N. Aghababaei, R. Zarebi, and F. Ghanbari, “UV/Chlorine process for dye degradation in aqueous solution: Mechanism, affecting factors and toxicity evaluation for textile wastewater”, J. Environ. Chem. Eng. Vol. 8, no. 5, p. 104244, 2020.
[26] Wu, J. Fang, Y. Xiang, C. Shang, X. Li, F. Meng, and X. Yang, “Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways”, Water Res. Vol. 104, pp. 272–282, 2016.
[27] Buxton, C. Greenstock, W. Helman, and A. Ross, “Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals OH/O- in Aqueous Solution”, J. Phys. Chem. Ref. Data, Vol. 17, pp. 513–886, 1988.
[28] Mertens and C. von Sonntag, “Photolysis (λ = 354 nm of tetrachloroethene in aqueous solutions”, J. Photochem. Photobiol. A Chem. Vol. 85, pp. 1–9, 1995.
[29] N. Tien et al., “Electrochemical degradation of indigo carmine, P-nitrosodimethylaniline and clothianidin on a fabricated Ti/SnO2–Sb/Co-βPbO2 electrode: Roles of radicals, water matrices effects and performance,” Chemosphere, Vol. 313, p. 137352, 2023.
[30] Teng et al., “Performance and mechanism of methylene blue degradation by an electrochemical process”, RSC Adv. Vol. 10, no. 41, pp. 24712–24720, 2020.
[31] F. Huang, L. Chen, H. Wang, and Z. Yan, “Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma,” Chem. Eng. J. Vol. 162, no. 1, pp. 250–256, 2010.