Anti-inflammatory activities of compounds isolated from Amanita caesarea collected in Lam Dong province
##plugins.themes.academic_pro.article.main##
Author
-
To Dao CuongPhenikaa University, Phenikaa University Nano Institute (PHENA); A&A Green Phoenix Group JSC, Phenikaa Research and Technology Institute (PRATI)Nguyen Phuong Dai NguyenTay Nguyen UniversityPhi Hung NguyenVietnam Academy of Science and Technology (VAST), Institute of Natural Products ChemistryNguyen Huu KienTay Nguyen UniversityNgu Truong NhanTay Nguyen UniversityNguyen Thi Thu TramCan Tho University of Medicine and PharmacyManh Hung TranThe University of Danang - School of Medicine and Pharmacy
Từ khóa:
Tóm tắt
Five natural secondary metabolites as cinnamic acid (1), (+)-catechin (2), (-)-epicatechin (3), p-coumaric acid (4), and ferulic acid (5) were isolated from Amanita caesarea based on anti-inflammatory activity-guided extraction. Their structures (1-5) were determined by NMR spectra as well as by comparison with previously reported literature. Compounds 3 and 5 have been isolated from A. caesarea for the first time. The anti-inflammatory activity through inhibition of nitric oxide (NO) production of isolates (1-5) was evaluated. Among them, compounds 2 and 3 exhibited strong inhibitory activity with IC50 values of 4.8 and 5.7 μM, respectively. Compounds 4 and 5 with IC50 values of 18.4 and 9.6 μM, respectively showed moderate inhibitory activity. The results proposed that A. caesarea might exert anti-inflammatory effects due to its mainly NO-inhibitory constituents
Tài liệu tham khảo
-
[1] E. Tulloss, “Amanita-distribution in the Americas, with comparison to eastern and southern Asia and notes on spore character variation with latitude and ecology”, Mycotaxon, Vol 93, 2005, pp. 189-231.
[2] Li, N. H. Oberlies, “The most widely recognized mushroom: Chemistry of the genus Amanita”, Life Sci, Vol 78, 2005, pp. 532-538.
[3] Sevindik, C. Bal, H. Baba, H. Akgül, Z. Selamoğlu, “Biological activity potentials of Amanita species, 2nd International Eurasian mycology congrees (EMC’ 19)”, Book of Proceedings and Abstracts, 2019, pp. 80-83.
[4] S. Deo, J. Khatra, S. Buttar, W. M. Li, L. E. Tackaberry, H. B. Massicotte, C. H. Lee, “Antiproliferative, immunostimulatory, and anti-inflammatory activities of extracts derived from mushrooms collected in Haida Gwaii, British Columbia (Canada)”, Int. J. Med. Mushrooms, Vol 21, 2019, pp. 629-643.
[5] C. Ruthes, E. R. Carbonero, M. M. Córdova, C. H. Baggio, G. L. Sassaki, P. A. J. Gorin, M. Iacomini, “Fucomannogalactan and glucan from mushroom Amanita muscaria: Structure and inflammatory pain inhibition”, Carbohydr. Polym, Vol 98, 2013, pp. 761-769.
[6] Yun, I. R. Hall, “Edible ectomycorrhizal mushrooms: challenges and achievements”, Can. J. Bot, Vol 82, 2004, pp. 1063-1073.
[7] H. Doğan, G. Akbaş, “Biological activity and fatty acid composition of Caesar’s mushroom”, Pharm. Biol, Vol 51, 2013, 863-871.
[8] Ozen, D. Kizil, S. Yenigun, H. Cesur, I. Turkekul, “Evaluation of bioactivities, phenolic and metal content of ten wild edible mushrooms from Western Black Sea region of Turkey”, Int. J. Med. Mushrooms, Vol 21, 2019, 979-994.
[9] Morales, M. Tabernero, C. Largo, G. Polo, A. J. Pirisa, C. Soler-Rivasa, “Effect of traditional and modern culinary processing, bioaccessibility, biosafety and bioavailability of eritadenine, a hypocholesterolemic compound from edible mushrooms”, Food Funct, Vol 9, 2018, pp. 6360-6368.
[10] Li, X. Chen, W. Lu, S. Zhang, X. Guan, Z. Li, D. Wang, “Anti-oxidative stress sctivity is essential for Amanita caesarea mediated neuroprotection on glutamate-induced apoptotic HT22 cells and an Alzheimer’s disease mouse model”, Int. J. Mol. Sci, Vol 18, 2017, pp. 1-14.
[11] Li, X. Chen, Y. Zhang, X. Liu, C. Wang, L. Teng, D. Wang, “Protective roles of Amanita caesarea polysaccharides against Alzheimer's disease via Nrf2 pathway”, Int. J. Biol. Macromol, Vol 121, 2019, pp. 29-37.
[12] Yang, D. D. Zhou, S. Y. Huang, A. P. Fang, H. B. Li, H. L. Zhu, “Effects and mechanisms of natural products on Alzheimer's disease”, Crit. Rev. Food Sci. Nutr, 2021. doi: 10.1080/10408398.2021.1985428.
[13] Šlejkovec Z., A. R. Byrne, T. Stijve, W. Goessler, K. J. Irgolic, “Arsenic compounds in higher fungi”, Appl. Organomet. Chem, Vol 11, 1997, pp. 673-682.
[14] Sarikurkcu, B. Tepe, D. K. Semiz, M. H. Solak, “Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey”, Food Chem. Toxicol, Vol 48, 2010, pp. 1230-1233.
[15] López-Vázquez, F. Prieto-García, M. Gayosso-Canales, E. M. Otazo Sánchez, J. R. Villagómez Ibarra, “Phenolic acids, flavonoids, ascorbic acid, β-glucans and antioxidant activity in Mexican wild edible mushrooms”, Ital. J. Food Sci, Vol 29, 2017, pp. 766-774.
[16] Papazov, P. Denev, V. Lozanov, P. Sugareva, “Profile of antioxidant properties in wild edible mushrooms, Bulgaria”, Oxid. Commun, Vol 44, 2021, pp. 523-533.
[17] Yokokawa, T. Mitsuhashi, “The sterol composition of mushrooms”, Phytochemistry, Vol 20, 1981, pp. 1349-1351.
[18] Luo, X. H. Yuan, P. Gao, “Chemical constituents from fruiting bodies of Amanita caesarea”, Zhongyaocai, Vol 39, 2016, pp. 107-109.
[19] X. Zhu, X. Ding, M. Wang, Y. L. Hou, W. R. Hou, C. W. Yue, “Structure and antioxidant activity of a novel polysaccharide derived from Amanita caesarea”, Mol. Med. Rep, Vol 14, 2016, pp. 3947-3954.
[20] J. Hu, Z. P. Li, W. Q. Wang, M. K. Song, R. T. Dong, Y. L. Zhou, Y. Li, D. Wang, “Structural characterization of polysaccharide purified from Amanita caesarea and its pharmacological basis for application in Alzheimer's disease: endoplasmic reticulum stress”, Food Funct, Vol 12, 2021, pp. 11009-11023.
[21] Ribeiro, P. G. de Pinho, P. B. Andrade, P. Baptista, P. Valentão, “Fatty acid composition of wild edible mushrooms species: A comparative study”, Microchem. J, Vol 93, 2009, pp. 29-35.
[22] D. Cuong, T. M. Hung, M. K. Na, D. T. Ha, J. C. Kim, D. H. Lee, S. W. Ryoo, J. H. Lee, J. S. Choi, B. S. Min, “Inhibitory effect on NO production of phenolic compounds from Myristica fragrans”, Bioor. Med. Chem. Lett, Vol 21, 2011, pp. 6884-6887.
[23] D. Cuong, T. M. Hung, J. S. Lee, K. Y. Weon, M. H. Woo, B. S. Min, “Anti-inflammatory activity of phenolic compounds from whole plant of Scutellaria indica”, Bioor. Med. Chem. Lett, Vol 25, 2015, pp. 1129-1134.
[24] D. Cuong, T. M. Hung, J. C. Kim, E. H. Kim, M. H. Woo, J. S. Choi, J. H. Lee, B. S. Min, “Phenolic compounds from Caesalpinia sappan heartwood and their anti-inflammatory activity”, J. Nat. Prod, Vol 75, 2012, pp. 2069-2075.
[25] Dewi, B. Widyarto, P. P. Erawijantari, W. Widowati, “In vitro study of Myristica fragrans seed (Nutmeg) ethanolic extract and quercetin compound as anti-inflammatory agent”, Int. J. Res. Med. Sci, Vol 3, 2015, pp. 2303-2310.
[26] Ernawati, H. Cartika, M. Hanafi, Suzana, D. Fairusi, “Synthesis of dihydrocoumarin derivatives from methyl trans-cinnamate and evaluation of their bioactivity as potent anticancer agents”, Asian J. Appl. Sci, Vol 2, 2014, pp. 291-309.
[27] H. Meulenbeld, H. Zuilhof, A. Van Veldhuizen, R. H. H. Van Denheuvel, S. Hartmans, “Enhanced (+)-catechin transglucosylating activity of Streptococcus mutans GS-5 glucosyltransferase-D due to fructose removal”, Appl. Environ. Microbiol, Vol 65, 1999, pp. 4141-4147.
[28] Lv, F. L. Luo, X. Y. Zhao, Y. Liu, G. B. Hu, C. D. Sun, X. Li, K. S. Chen, “Identification of proanthocyanidins from Litchi (Litchi chinensis Sonn.) Pulp by LC-ESIQ-TOF-MS and their antioxidant activity”, PLoS ONE, Vol 10, 2015, pp. 1-17.
[29] Swisłocka, M. Kowczyk-Sadowy, M. Kalinowska, W. Lewandowski, “Spectroscopic (FT-IR, FT-Raman, 1H and
13C NMR) and theoretical studies of p-coumaric acid and alkali metal p-coumarates”, Spectroscopy, Vol 27, 2012, pp. 35-48.
[30] G. Jain, S. J. Surana, “Isolation, characterization and hypolipidemic activity of ferulic acid in high-fat-diet-induced hyperlipidemia in laboratory rats”, EXCLI J, Vol 15, 2016, pp. 599-613.
[31] J. Botha, D. A. Young, D. Ferreira, D. G. Roux, “Synthesis of condensed tannins. Part 1. Stereo selective and stereo specific syntheses of optically pure 4-arylflavan-3-ols, and assessment of their absolute stereochemistry at C-4 by means of circular dichroism”, J. Chem. Soc. Perkin Trans, Vol 1, 1981, pp. 1213-1245.
[32] Korver, C. K. Wilkim, “Circular dichroism spectra of flavanols”, Tetrahedron, Vol 27, 1971, pp. 5459-5465.
[33] C. Kuo, R. A. Schroeder, “The emerging multifaceted roles of nitric oxide”, Ann. Surg, Vol 221, 1995, pp. 220-235.
[34] J. Farrell, D. R. Blake, R. M. Palmer, S. Moncada, “Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases”, Ann. Rheum. Dis, Vol 51, 1992, pp. 1219-1222.
[35] G. Kilbourn, A. Jubran, S. S. Gross, O. W. Griffth, R. Levi, J. Adams, R. F. Lodato, “Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis”, Biochem. Biophys. Res. Commun, Vol 172, 1990, pp. 1132-1138.
[36] D. Kroncke, K. Fehsel, V. Kolb-Bachofen, “Inducible nitric oxide synthase in human diseases”, Clin. Exp. Immunol, Vol 113, 1998, pp. 147-156.
[37] Y. Nguyen, D. C. To, M. H. Tran, J. S. Lee, J. H. Lee, J. A. Kim, M. H. Woo, B. S. Min, “Anti-inflammatory flavonoids isolated from Passiflora foetida”, Nat. Prod. Commun, Vol 10, 2015, pp. 929-931.
[38] D. Hoang, P. H. Nguyen, M. T. Doan, , “Anti-Inflammatory compounds from Vietnamese Piper bavinum”, J. Chem, Vol 2020, 2020, pp. 1-7.
[39] V. D. Hoang, P. H. Nguyen, M. H. Tran, N. T. Huynh, H. T. Nguyen, B. S. Min, D. C. To, “Identification of anti-Inflammatory constituents from Vietnamese Piper hymenophyllum”, Rev. Bras. Farmacogn, Vol 30, 2020, pp. 312-316