Tối ưu hóa các yếu tố ảnh hưởng đến phản ứng thủy phân khuỷu chân gà với xúc tác flavourzyme nhằm thu dịch axit amin
##plugins.themes.academic_pro.article.main##
Author
-
Nguyễn Thị Minh NguyệtTrường Đại học Bách khoa - Đại học Đà Nẵng, Đà Nẵng, Việt NamNguyễn Văn QuangTrung tâm Chất lượng Nông lâm Thủy sản vùng 2 (NAFIQUAD – BRANCH 2), Việt NamBùi Viết CườngTrường Đại học Bách khoa - Đại học Đà Nẵng, Đà Nẵng, Việt Nam
Từ khóa:
Tóm tắt
Xử lý thích hợp phụ phẩm giết mổ và chế biến gà sẽ góp phần nâng cao giá trị kinh tế và giảm lượng chất thải rắn ra môi trường. Dựa trên kết quả nghiên cứu đã tiến hành, phương pháp bề mặt đáp ứng được sử dụng trong nghiên cứu này để tối ưu hóa các yếu tố ảnh hưởng đến phản ứng thủy phân khuỷu chân gà với xúc tác Flavourzyme, gồm nhiệt độ thủy phân (X1, °C), pH (X2), nồng độ enzyme (X3, %), thời gian thủy phân (X4, phút), và thể tích phản ứng (X5, mL). Điều kiện thủy phân tối ưu: X1 = 73,78°C; X2 = 7,37; X3 = 0,95%; X4 = 12,43 (phút); và X5 = 113,78 (mL) với hiệu suất thu nhận nitơ axit amin đạt giá trị cực đại Hmax = 88,3786% và kì vọng d = 0,883786. Hiệu suất thủy phân được xác định bằng thực nghiệm ở điều kiện tối ưu Hmax = 80,46 ± 0,533%. Nghiên cứu này đã từng bước nâng cao khả năng ứng dụng của các nghiên cứu đã được tiến hành.
Tài liệu tham khảo
-
[1] Lasekan, F. A. Bakar, and D. Hashim, “Potential of chicken by-products as sources of useful biological resources”, Waste management, vol. 33, no. 3, pp. 552-565, 2013.
[2] T Son and T. Duc, “Global chicken meat production and trade in 2023”, nguoichannuoi, 2023, [Online] Available: https://nguoichannuoi.vn/san-xuat-va-thuong-mai-thit-ga-toan-cau-nam-2023-nd10268.html, [Accessed 20/04/2023].
[3] V. Bui, M.N.T Nguyen, Q.V. Nguyen, D.X. Bui, and M.T. Pham, “Study on hydrolysis reaction of chicken cartilage using Flavourzyme”, UED Journal of Social Sciences, Humanities, Education, vol. 9, no. 4, pp. 1-6, 2019.
[4] V. Bui, C. T. K. Nguyen, and D. X. Bui, “Screening of factors influencing the hydrolysis reaction of chicken leg cartilage with Protamex enzyme as a catalyst”, The Journal of Agriculture Development, vol. 19, no. 4, pp. 73-79, 2020.
[5] GY Zhu et al., “Hydrolysis technology and kinetics of poultry waste to produce amino acids in subcritical water”, Journal of Analytical Applied Pyrolysis, vol. 88, no. 2, pp. 187-191, 2010.
[6] E Salminen and J Rintala, “Anaerobic digestion of organic solid poultry slaughterhouse waste: A review”, Bioresource Technology, vol. 83, no. 1, pp. 13-26, 2002.
[7] Í.B.D.S. Araújo et al., “Optimal conditions for obtaining collagen from chicken feet and its characterization”, Food Science and Technology, vol. 38, pp. 167-173, 2018.
[8] M. Seyer, D. M. Brickley, and M. J. Glimcher, “The identification of two types of collagen in the articular cartilage of postnatal chickens”, Calcified Tissue Research, vol. 17, no. 1, pp. 43-55, 1974.
[9] Bueno-Solano et al., “Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products”, Food Chemistry, vol. 112, no. 3, pp. 671-675, 2009.
[10] L. Meeker, Essential Rendering - All about the Animal By-products Industry, National Renderers Association (Virginia), 2006.
[11] Jayathilakan, K. Sultana, K. Radhakrishna, and A. S. Bawa, “Utilization of byproducts and waste materials from meat, poultry, and fish processing industries: A review”, Journal of Food Science and Technology, vol. 49, no. 3, pp. 278-293, 2012.
[12] K.A. Bezerra et al., “Identification of angiotensin I-converting enzyme-inhibitory and anticoagulant peptides from enzymatic hydrolysates of chicken combs and wattles”, Journal of Medicinal Food, vol. 22, no. 12, pp. 1294-1300, 2019.
[13] R.R.d.A. Cordeiro et al., “Collagen production from chicken keel bone using acid and enzymatic treatment at a temperature of 30°C”, Food Science Technology, vol. 40, no. 2, pp. 491-497, 2019.
[14] R Schwartz et al,, “Novel hydrolyzed chicken sternal cartilage extract improves facial epidermis and connective tissue in healthy adult females: A randomized, double-blind, placebo-controlled trial”, Alternative Therapies in Health Medicine, vol. 25, no. 5, pp. 12-29, 2019.
[15] Ponkham, K. Limroongreungrat, A. Sangnark, “Extraction of collagen from hen eggshell membrane by using organic acids”, Thai Journal of Agricultural Science, vol. 44, no. 5, pp. 354-360, 2011.
[16] B. Potti and M. O. Fahad, “Extraction and characterization of collagen from broiler chicken feet (Gallus gallus domesticus) - Biomolecules from poultry waste”, Journal of Pure and Applied Microbiology, vol. 11, no. 1, pp. 315-322, 2017.
[17] C. Bui, X.D. Bui, and M.N. Dang, “Study on hydrolysis reaction of chicken cartilage using enzyme papain”, Vietnam Trade and Industry Review, vol. 41, pp. 29-32, 2020.
[18] T.Q. Hoa, T. T. X. Huong, N. P. Minh, and D. T.A. Dao, “Investigation of enzymatic optimization by Flavourzyme and Celluclast for soy protein hydrolysate powder”, International Journal of Advance Pharmaceutical and Biological Sciences, vol. 3, no. 3, pp. 563-574, 2014.
[19] Merz et al., “Flavourzyme, an enzyme preparation with industrial relevance: Automated nine-step purification and partial characterization of eight enzymes”, Journal of Agricultural Food Chemistry, vol. 63, no. 23, pp. 5682-5693, 2015.
[20] C. Montgomery and G.C. Runger, Applied statistics and probability for engineers. John Wiley & Sons (Hoboken), 2010.
[21] D. Bui et al., “Optimization of production parameters of fish protein hydrolysate from Sarda Orientalis black muscle (by-product) using protease enzyme”, Clean Technologies Environmental Policy, vol. 23, no. 1, pp. 31-40, 2021.
[22] G. Pope and M. F. Stevens, “The determination of amino-nitrogen using a copper method”, Biochemical Journal, vol. 33, no. 7, p. 1070, 1939.
[23] Horwitz, Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs, AOAC International (Maryland), 2010.
[24] Chen, D. Liu, B. Shi, H. Wang, Y. Cheng, and W. Zhang, “Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology”, Carbohydrate Polymers, vol. 93, no. 1, pp. 81-88, 2013.
[25] M. Kumar, A. K. Jain, M. Ghosh, and A. Ganguli, “Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei”, Biotechnology and Bioprocess Engineering, vol. 17, no. 3, pp. 606-616, 2012.