Nghiên cứu tổng quan về các loại thanh FRP và tính ứng dụng của một số công thức đánh giá cường độ liên kết giữa thanh FRP – bê tông
##plugins.themes.academic_pro.article.main##
Author
-
Nguyễn Minh HảiTrường Đại học Bách khoa - Đại học Đà Nẵng, Đà Nẵng, Việt NamĐỗ Việt HảiTrường Đại học Bách khoa - Đại học Đà Nẵng, Đà Nẵng, Việt NamPhan Hoàng NamTrường Đại học Bách khoa - Đại học Đà Nẵng, Đà Nẵng, Việt NamPhạm Văn NgọcTrường Đại học Bách khoa - Đại học Đà Nẵng, Đà Nẵng, Việt NamHuỳnh Phương NamĐại học Đà Nẵng, Đà Nẵng, Việt NamPhạm Tiến CườngTrường Đại học Bách khoa - Đại học Đà Nẵng, Đà Nẵng, Việt Nam
Từ khóa:
Tóm tắt
Nghiên cứu trình bày tổng quan về các loại thanh cốt sợi tổng hợp (Fiber Reinforced Polymer, gọi tắt là thanh FRP), có cập nhật các công nghệ mới gần đây về vật liệu đầu vào và phương pháp gia công bề mặt. Bên cạnh đó, nghiên cứu cũng khảo sát tính ứng dụng của bảy công thức trong các quy chuẩn thiết kế và các nghiên cứu trước đây thông qua phân tích tính tương quan giữa giá trị tính toán với bộ dữ liệu gồm gần 800 mẫu thí nghiệm được thu thập. Kết quả chỉ ra rằng phần lớn các công thức không thể đánh giá cường độ liên kết giữa thanh FRP và bê tông trên phạm vi rộng của các thông số đầu vào, có cập nhật các dạng thanh FRP được phát triển trong thời gian gần đây. Do đó, cần xác định phạm vi sử dụng hợp lý của từng công thức khi tính toán cường độ liên kết giữa thanh FRP – bê tông trong thiết kế các kết cấu bê tông cốt FRP.
Tài liệu tham khảo
-
[1] Shamsad, “Reinforcement Corrosion in Concrete Structures, Its Monitoring and Service Life Prediction - a Review”, Cement and Concrete Composites, vol. 25, no. 4-5, pp. 459–471, 2003.
[2] -J. Han, T. Ishida, and S. Tsuchiya, “Numerical evaluation on the effect of rebar corrosion on long-term structural behavior of underground RC Culverts”, Structures, vol. 48, pp. 1920–31, 2023.
[3] E Melchers and I. A Chaves, “Durable steel-reinforced concrete structures for marine environments”, Sustainability, vol. 13, no. 24, pp. 13695, 2021.
[4] Dasar, D. Patah, H. Hamada, D. Yamamoto, and Y. Sagawa, “Life Performance of 40-Year-Old RC Beams with Different Concrete Covers and Bar Diameters in Natural Corrosion Environments”, Structures, vol. 46, pp. 2031–2046, 2022.
[5] Farooq, Development of FRP based composite fibre for fibre reinforced cementitious composites”, University of British Columbia Open Collections, 1970.
[6] M. Tuan, “Moment capacity of reinforced concrete beam using hybrid (steel and GFRP) bars conforming to TCVN 5574:2018”, Journal of Science and Technology in Civil Engineering, vol. 13, no. 4V, pp. 73–81, 2019.
[7] T. Ninh, T. H. Linh, D. V. Hai, K. V. Tai, and N. T. Hieu, “Experimental study on flexural behavior of concrete beams reinforced with hybrid GFRP and steel bars corroded by chloride ion”, Journal of Science and Technology in Civil Engineering, vol. 15, no. 3V, pp. 16–26, 2021.
[8] H. M. Amran, R. Alyousef, R. S. M. Rashid, H. Alabduljabbar, and C.-C. Hung, “Properties and Applications of FRP in Strengthening RC Structures: A Review”, Structures, vol. 16, pp. 208–238, 2018.
[9] El-Mogy, A. El-Ragaby, and E. El-Salakawy, “Behavior of Continuous Concrete Beams Reinforced with FRP Bars”. Advances in FRP Composites in Civil Engineering, 2011, pp. 283–286.
[10] Ju, H. Oh, and J. Sim, “Indirect Fatigue Evaluation of CFRP-Reinforced Bridge Deck Slabs under Variable Amplitude Cyclic Loading”, KSCE Journal of Civil Engineering, vol. 21, no. 5, pp. 1783–1792, 2016.
[11] American Concrete Institute, Guide for the design and construction of structural concrete reinforced with FRP bars; ACI 440.1R-06, USA, 2006.
[12] Canadian Standards Association. Design and Construction of Building Components with Fibre-Reinforced Polymers; CSA-S806-12, Canada, 2012.
[13] Canadian Standards Association. Canadian Highway Bridge Design Code. CSA-S6-06, Canada, 2010.
[14] Machida, Atsuhiko, Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials. Research Committee on Continuous Fiber Reinforcing Materials, Japan Society of Civil Engineers, 1997.
[15] The International Federation for Structural Concrete (FIB): Model Code 2010 - First complete draft, Volume 1, Bulletin No. 55, 2010.
[16] Saleh, A. Ashour, and T. Sheehan, “Bond between glass fibre reinforced polymer bars and high - strength concrete”, Structures, vol. 22, pp. 139–53, 2019.
[17] Basaran, I. Kalkan, E. Bergil, and E. Erdal, “Estimation of the FRP-Concrete Bond Strength with Code Formulations and Machine Learning Algorithms”, Composite Structures, vol. 268, pp. 113972, 2021.
[18] Marek, “Compressive Strength of Modified FRP Hybrid Bars.” Materials, vol. 13, no. 8, pp. 1898, 2020.
[19] Łach et al., “Effect of Fiber Reinforcement on the Compression and Flexural Strength of Fiber-Reinforced Geopolymers”, Applied Sciences, vol. 11, no. 21, pp. 10443–43, 2021.
[20] Brahim et al., “Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-frp bars for concrete structures”, Composites Part B: Engineering, vol. 114, pp. 163–174, 2017.
[21] G. Kossakowski and W. Wciślik, “Fiber-Reinforced Polymer Composites in the Construction of Bridges: Opportunities, Problems and Challenges”, Fibers, vol. 10, no. 4, pp. 37, 2022.
[22] “12mm Fiberglass Rod”, Indiamart. [Online]. Availabe: https://www.indiamart.com/proddetail/12mm-fiberglass-thread-rod-21753250497.html, [Accessed March 5, 2023].
[23] Hamidreza et al., “Bond Durability between Anchored GFRP Bar and Seawater Concrete under Offshore Environmental Conditions”, Materials and Structures, vol. 56, no. 3, 2023.
[24] Eleni et al., “Bond Durability of Carbon Fiber–Reinforced Polymer Tendons Embedded in High-Strength Concrete”, Journal of Composites for Construction, vol. 22, no. 5, 2018.
[25] Xia et al., “Bond behavior of basalt fiber-reinforced polymer bars embedded in concrete under mono-tensile and cyclic loads”, International Journal of Concrete Structures and Materials, vol. 14, no. 1, 2020.
[26] Ekenel, F. D. C. y Basalo, and A. Nanni, “Fiber-Reinforced Polymer Reinforcement for Concrete Members”, Bulding Safety Journal, 2021. [Online]. Availabe: https://www.iccsafe.org/building-safety-journal/bsj-technical/fiber-reinforced-polymer-reinforcement-for-concrete-members/ [Accessed March 5, 2023].
[27] Anant and M. S. Alam, “A Review on the Application of Sprayed-FRP Composites for Strengthening of Concrete and Masonry Structures in the Construction Sector”, Composite Structures, vol. 187, pp. 518–534, 2018.
[28] Liu et al., "Experimental Study on Mechanical Properties of Novel FRP Bars with Hoop Winding Layer", Advances in Materials Science and Engineering, vol. 10, pp. 1-18, 2021.
[29] Ivey, J. P. Carey, and C. Ayranci, “Manufacturing and Characterization of Braidtruded Fiber Reinforced Polymer Rebar”, Polymer Composites, vol. 39, no. 2, pp. 337–350, 2016.
[30] Roman and R. Yuan, “Bond Strength of Fiber Reinforced Polymer Rebars in Normal Strength Concrete”, Journal of Composites for Construction, vol. 9, no. 3, pp. 203–213, 2005.
[31] -Y. Lee et al., “Interfacial Bond Strength of Glass Fiber Reinforced Polymer Bars in High-Strength Concrete”, Composites Part B: Engineering, vol. 39, no. 2, pp. 258–270, 2008.
[32] Baena et al., “Experimental Study of Bond Behaviour Between Concrete and FRP Bars Using a Pull-out Test”, Composites Part B-engineering, vol. 40, no. 8, pp. 784–97, 2009.
[33] Bogachan and I. Kalkan, “Development Length and Bond Strength Equations for FRP Bars Embedded in Concrete”, Composite Structures, vol. 251, pp. 112662, 2020.
[34] Avishay, “Bond Mechanism of FRP Rebars to Concrete”, Materials and Structures, vol. 32, no. 10, pp. 761–68, 1999.
[35] Arnaud et al., “Experimental Investigations on the Bond Behavior Between Concrete and FRP Reinforcing Bars”, Construction and Building Materials, vol. 173, pp. 136–48, 2018.
[36] Sirajul et al., “Bond Characteristics of Straight- and Headed-End, Ribbed-Surface, GFRP Bars Embedded in High-Strength Concrete”, Construction and Building Materials, vol. 83, pp. 283–298, 2015.
[37] Zenon and K. Pilakoutas, “Bond Behavior of Fiber Reinforced Polymer Bars under Direct Pullout Conditions”, Journal of Composites for Construction, vol. 8, no. 2, pp. 173–181, 2004.
[38] J. Malvar et al., “Bond between Carbon Fiber Reinforced Polymer Bars and Concrete. I: Experimental Study”, Journal of Composites for Construction, vol. 7, no. 2, pp. 154–163, 2003.
[39] Abdeldjelil and H. Wang, “Bond Durability of FRP Bars Embedded in Fiber-Reinforced Concrete”, Journal of Composites for Construction, vol. 16, no. 4, pp. 371–380, 2012.
[40] Dong et al., “Bond durability of bfrp bars embedded in concrete under seawater conditions and the long-term bond strength prediction”, Materials and Design, vol. 92, pp. 552–62, 2016.
[41] Wei et al., “Bond Performance Between Fibre-reinforced Polymer Bars and Concrete Under Pull-out Tests”, Construction and Building Materials, vol. 227, pp. 116803, 2019.
[42] C. Tang, T. Y. Lo, and R. V. Balendran, “Bond performance of polystyrene aggregate concrete (PAC) reinforced with glass-fibre-reinforced polymer (GFRP) bars”, Building and Environment, vol. 43, no. 1, pp. 98–107, 2008.
[43] Abdolkarim and P. J Hogg, “Temperature and environmental effects on glass fibre rebar: modulus, strength and interfacial bond strength with concrete”, Composites Part B-engineering, vol. 36, no. 5, pp. 394–404, 2005.
[44] Tighiouart, B. Benmokrane, and D. Gao, “Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars”, Construction and Building Materials, vol. 12, no. 8, pp. 453–62, 1998.
[45] Bazli, H. Ashrafi, and A. V. Oskouei, “Experiments and Probabilistic Models of Bond Strength Between GFRP Bar and Different Types of Concrete Under Aggressive Environments”, Construction and Building Materials, vol. 148, pp. 429–443, 2017.
[46] Yining et al., “Fibres for Enhancing of the Bond Capacity Between GFRP Rebar and Concrete”, Construction and Building Materials, vol. 51, pp. 303–12, 2014.
[47] F. Davalos, Y. Chen, and I. Ray, “Effect of FRP Bar Degradation on Interface Bond With High Strength Concrete”, Cement and Concrete Composites, vol. 30, no. 8, pp. 722–730, 2008.
[48] -P. Won et al., “Effect of Fibers on the Bonds Between FRP Reinforcing Bars and High-strength Concrete”, Composites Part B-engineering, vol. 39, no. 5, pp. 747–55, 2008.
[49] Zhou, X. Chen, and S. Chen, “Effect of Different Environments on Bond Strength of Glass Fiber-reinforced Polymer and Steel Reinforcing Bars”, KSCE Journal of Civil Engineering, vol. 16, no. 6, pp. 994–1002, 2012.
[50] Robert and B. Benmokrane, “Effect of Aging on Bond of GFRP Bars Embedded in Concrete”, Cement and Concrete Composites, vol. 32, no. 6, pp. 461–467, 2010.
[51] Qingduo et al., “Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete”, Construction and Building Materials, vol. 23, no. 2, pp. 865–71, 2009.
[52] Ahmed et al., “Bond strength of FRP bars in recycled-aggregate concrete”, Construction and Building Materials, vol. 267, pp. 120919, 2021.
[53] A. Aiello, M. Leone and M. Pecce, “Bond Performances of FRP Rebars-Reinforced Concrete.” Journal of Materials in Civil Engineering, vol. 19, no. 3, pp. 205–213, 2007.
[54] Hossain et al., “Bond Strength of Standard and High-Modulus GFRP Bars in High-Strength Concrete”, Journal of Materials in Civil Engineering, vol. 26, no. 3, pp. 449–56, 2014.
[55] Kim et al., “Effects of Structural Fibers on Bonding Mechanism Changes in Interface Between GFRP Bar and Concrete”, Composites Part B-engineering, vol. 45, no. 1, pp. 768–79, 2013.
[56] Vilanova et al., “Experimental study of bond-slip of GFRP bars in concrete under sustained loads”, Composites Part B-engineering, vol. 74, pp. 42–52, 2015.
[57] Yan et al., “Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: freeze-thaw cycles and alkaline-saline solution”, Composites Part B-engineering, vol. 116, pp. 406–21, 2017.
[58] M. Hai, N. Akinori, and F. Shuichi, “Study on applicability of shear resistance evaluation formulas of perfobond strip based on push-out test data of previous studies”, JSCE Journal of Structural Engineering, vol. 65A, pp. 712-724, 2019.
[59] N. M. Hai, P. H. Nam, D. V. Hai, and H. P. Nam, “An experiment-based nonlinear model of shear force-slip relationship for perfobond strips in an unreinforced narrow joint with high-strength steel fiber mortar”, Case Studies in Construction Materials, 2023, pp. e02092.