Ảnh hưởng của vi sinh bản địa (IMO) đến sự phân huỷ rác bếp hữu cơ
##plugins.themes.academic_pro.article.main##
Author
-
Kieu Thi HoaThe University of Danang - University of Technology and Education, Danang, VietnamTran Minh ThaoThe University of Danang - University of Technology and Education, Danang, VietnamNguyen-Sy ToanThe University of Danang - University of Technology and Education, Danang, Vietnam
Từ khóa:
Tóm tắt
Nghiên cứu này nhằm khảo sát ảnh hưởng của vi sinh vật bản địa (IMO) đến sự phân hủy chất thải hữu cơ nhà bếp. Kết quả cho thấy, nghiệm thức M1 (bổ sung IMO, sục khí) làm cho việc phân hủy carbon nhanh hơn và hiệu quả hơn so với nghiệm thức M2 (bổ sung IMO, không sục khí) và nghiệm thức CT (không bổ sung IMO, không sục khí). M1, M2 và CT lần lượt đạt được mức giảm carbon hữu cơ (TOC) là 60,3, 50,4 và 29,8%. NO3- giảm khoảng 50% sau 44 ngày ở cả M1 và M2 nhưng ổn định ở CT trong suốt quá trình. Trong khi đó, NH4+ cao hơn đáng kể ở CT so với M1 và M2. Như vậy, việc kết hợp IMO và sục khí đã dẫn đến giảm carbon nhanh hơn và tăng cường chuyển hóa nitơ. Do vậy việc sử dụng IMO và sục khí có tiềm năng tăng hiệu quả trong xử lý chất thải hữu cơ nhà bếp.
Tài liệu tham khảo
-
[1] A. Bustamante, C. Paredes, F. C. Marhuenda-Egea, A. Pérez-Espinosa, M. P. Bernal, and R. Moral, "Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability", Chemosphere, vol. 72, no. 4, pp. 551-557, 2008.
[2] Lu, X. Wu, and J. Guo, "Characteristics of municipal solid waste and sewage sludge co-composting", Waste Management, vol. 29, no. 3, pp. 1152-1157, 2009.
[3] Canet et al., "Composting olive mill pomace and other residues from rural southeastern Spain", Waste Management, vol. 28, no. 12, pp. 2585-2592, 2008. http://doi.org/10.1016/j.wasman.2007.11.015
[4] M. Carreiro, R. L. Sinsabaugh, D. A. Repert, and D. F. Parkhurst, "Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition", Ecology, vol. 81, no. 9, pp. 2359-2365, 2000. http://doi.org/10.1890/0012-9658(2000)081[2359:meseld]2.0.co;2
[5] Li, J. Li, S. Li, X. Zhang, and X. Xie, "Effects of different composting methods on Enteromorpha: Maturity, nutrients, and organic carbon transformation", Journal of Cleaner Production, vol. 380, pp. 135073, 2022. http://doi.org/10.1016/j.jclepro.2022.135073
[6] -P. Wang et al., "Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting", Bioresource Technology, vol. 337, pp. 125492, 2021. http://doi.org/10.1016/j.biortech.2021.125492
[7] Logan and C. Visvanathan, "Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects", Waste Management & Research: The Journal for a Sustainable Circular Economy, vol. 37, no. 1_suppl, pp. 27-39, 2019.
[8] Balci, H. Demirsoy, and L. Demirsoy, "Evaluation of Performances of Some Organic Waste in Organic Strawberry Cultivation", Waste and Biomass Valorization, vol. 10, no. 5, pp. 1151-1157, 2017. http://doi.org/10.1007/s12649-017-0132-6
[9] Sumathi, A. Janardhan, A. Srilakhmi, D. V. R. Gopal, and G. Narasimha., "Impact of Indigenous Microorganisms on Soil Microbial Activity and Enzyme Activities", Archieves of Applied Science Research, vol. 4, no. 2, pp. 1065-1073, 2012.
[10] Kanoo and A. Garg, "Effect of diaper waste on composting of household wet biodegradable waste in a decentralized system", Environmental Science and Pollution Research, 2023. http://doi.org/10.1007/s11356-023-25942-5
[11] Zhang, Z. Xu, G. Wang, N. Huda, G. Li, and W. Luo, "Insights into characteristics of organic matter during co-biodrying of sewage sludge and kitchen waste under different aeration intensities", Environmental Technology & Innovation, vol. 20, pp. 101117, 2020/11 2020. http://doi.org/10.1016/j.eti.2020.101117
[12] Zahedi, "Energy efficiency: Importance of indigenous microorganisms contained in the municipal solid wastes", Waste Management, vol. 78, pp. 763-769, 2018. http://doi.org/ 10.1016/j.wasman.2018.06.035
[13] Li et al., "Effects of flue gas desulfurization gypsum by-products on microbial biomass and community structure in alkaline–saline soils", Journal of Soils and Sediments, vol. 12, no. 7, pp. 1040-1053, 2012. http://doi.org/10.1007/s11368-012-0531-z
[14] P. Wackett, "Microbial responses to temperature change: An annotated selection of World Wide Web sites relevant to the topics in environmental microbiology", Environmental Microbiology Reports, vol. 8, no. 4, pp. 545-546, 2016.
[15] Bockreis and I. Steinberg, "Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills", Waste Management, vol. 25, no. 4, pp. 337-343, 2005. http://doi.org/10.1016/j.wasman.2005.02.004
[16] J. Kaplovsky, "Activity of Microorganisms in Organic Waste Disposal", Applied Microbiology, vol. 5, no. 3, pp. 175-179, 1957. http://doi.org/10.1128/am.5.3.175-179.1957
[17] Sundberg and H. Jönsson, "Higher pH and faster decomposition in biowaste composting by increased aeration", Waste Management, vol. 28, no. 3, pp. 518-526, 2008. http://doi.org/10.1016/j.wasman.2007.01.011
[18] Kuok, H. Mimoto, and K. Nakasaki, "Reduction of ammonia inhibition of organic matter degradation by turning during a laboratory-scale swine manure composting", International Journal of Waste Resources, vol. 3, no. 1, pp. 5-8, 2013. http://doi.org/10.12777/ijwr.3.1.2013.5-8
[19] Nigussie, S. Bruun, T. W. Kuyper, and A. de Neergaard, "Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability", Chemosphere, vol. 166, pp. 352-362, 2017. http://doi.org/10.1016/j.chemosphere.2016.09.123
[20] Tu et al., "The Effect of Biochar and Bacterium Agent on Humification During Swine Manure Composting", in book: Functions of Natural Organic Matter in Changing Environment, ed: Springer Netherlands, 2012, pp. 1021-1025.
[21] Zhu, H. Dong, W. Huang, L. Li, and J. Yang, "Greenhouse Gas Emissions during Swine Manure Composting in a Rectangular Bed with Daily Turning", Transactions of the ASABE, vol. 58, no. 6, pp. 1817-1823, 2015. http://doi.org/10.13031/trans.58.10786
[22] P. Schimel and F. S. Chapin Iii, "Microbial Processes in the Alaskan Boreal Forest", in Alaska's Changing Boreal Forest, ed: Oxford University Press, 2006.
[23] Myeni, M. Moeletsi, M. Thavhana, M. Randela, and L. Mokoena, "Barriers Affecting Sustainable Agricultural Productivity of Smallholder Farmers in the Eastern Free State of South Africa", Sustainability, vol. 11, no. 11, pp. 3003, 2019.
[24] J. Mikan, J. P. Schimel, and A. P. Doyle, "Temperature controls of microbial respiration in arctic tundra soils above and below freezing", Soil Biology and Biochemistry, vol. 34, no. 11, pp. 1785-1795, 2002. http://doi.org/10.1016/s0038-0717(02)00168-2
[25] L. Sinsabaugh, M. M. Carreiro, and D. A. Repert, "Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss", Biogeochemistry, vol. 60, no. 1, pp. 1-24, 2002. http://doi.org/10.1023/a:1016541114786
[26] A. Davidson, E. Belk, and R. D. Boone, "Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest", Global Change Biology, vol. 4, no. 2, pp. 217-227, 1998.
[27] Schnürer and Å. Nordberg, "Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature", Water Science and Technology, vol. 57, no. 5, pp. 735-740, 2008. http://doi.org/10.2166/wst.2008.097
[28] Wang, X. Zhang, and C. Huang, "Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China", Geoderma, vol. 150, no. 1-2, pp. 141-149, 2009.
[29] X. Xu, C. F. Stange, A. Richter, W. Wanek, and Y. Kuzyakov, "Light affects competition for inorganic and organic nitrogen between maize and rhizosphere microorganisms", Plant and Soil, vol. 304, no. 1-2, pp. 59-72, 2007.