Assessment of mechanical and electronics properties of XO2 monolayer materials using first-principles method
Abstract: 236
|
PDF: 135
##plugins.themes.academic_pro.article.main##
Author
-
Tran The QuangThai Binh University, VietnamNguyen Hoang LinhChangwon National University, Republic of Korea; Korea Institute of Ceramic Engineering and Technology, Republic of KoreaDinh The HungPhenikaa School of Engineering, Phenikaa University, VietnamDo Van TruongSchool of Mechanical Engineering, Hanoi University of Science and Technology, VietnamTo Toan ThangSchool of Mechanical Engineering, Hanoi University of Science and Technology, VietnamLe Nhat BangThai Binh University, Vietnam
Keywords:
Abstract
In this paper, a comprehensive assessment of the mechanical and electronic properties of XO2 monolayer structures (X is Ge or Sn) is conducted through first-principles calculations. The results of the dynamic and static analysis confirm the feasibility of the material structure. Both GeO2 and SnO2 demonstrate mechanical flexibility, where GeO2 has a tensile stress of 16.15 N/m and SnO2 reaches 12.90 N/m. In the equilibrium state, both materials exhibit indirect semiconductor properties with large energy band gaps. Under biaxial strains, the energy band gaps of both structures decrease linearly up to 80%. The research results not only elucidate the correlation between strain and electronic properties but also highlight the potential applications of XO2 monolayer structures. These findings provide a scientific basis for optimizing the performance of devices in the future.
References
-
[1] S. Novoselov et al., "Electric field effect in atomically thin carbon films", Science, Vol. 306, no. 1, pp. 666-669, 2004. https://doi.org/10.1126/science.1102896
[2] M. L. Hu, Z. Yu, J. L. Yin, C. X. Zhang, and L. Z. Sun, "A DFT-LDA study of electronic and optical properties of hexagonal boron nitride under uniaxial strain", Computational Materials Science, Vol. 54, no. 1, pp. 165-169, 2012. https://doi.org/10.1016/j.commatsci.2011.10.041
[3] N. H. Linh, N. M. Son, T. T. Quang, N. V. Hoi, V. V. Thanh, and D. V. Truong, "First-principles investigation on the electromechanical properties of monolayer 1H Pb-Dichalcogenides", Materials Research Society of Korea, Vol. 33, no. 5, pp. 189-194, 2023. https://doi.org/10.3740/MRSK.2023.33.5.189
[4] Z. Zhen, G. Jie, L. Dan, and T. David, "Designing Isoelectronic Counterparts to Layered Group V Semiconductors", ACS Nano, Vol. 9, no. 8, pp. 8284-8290, 2015. https://doi.org/10.1021/acsnano.5b02742
[5] Y. Ugur, De. Ilker, D. Çakir, G. Oguz, and S. Cem, "A systematical ab-initio review of promising 2D MXene monolayers towards Li-ion battery applications", JPhys Energy, Vol. 2, no. 3, pp. 1-15, 2020. https://doi.org/10.1088/2515-7655/ab9fe3
[6] N. H. Linh, N. X. Dong, T. T. Quang, D. T. Hung, and D. V. Truong, "Revealing Photo-electrochemical, Piezoelectric, and Ferroelectric Properties of γ-SnTe Monolayer via Density Functional Theory", Computational Materials Science, Vol. 253, no., pp. 2025. https://10.1016/j.commatsci.2025.113879
[7] N. H. Linh, T. T. Quang, N. M. Son, T. T. Thang, V. V. Thanh, and D. V. Truong, "Theoretical computational of electronic and transport properties and optical conductivity of monolayer NiS2 under mechanical strain", Journal of science and technology technical universities, Vol. 33, no. 1, pp. 34-41, 2023. https://doi.org/10.51316/jst.164.etsd.2023.33.1.5
[8] N. H. Linh, T. T. Quang, N. M. Son, V. Van Thanh, and D. V. Truong, "Prediction of mechanical, electronic and optical properties of monolayer 1T Si-dichalcogenides via first-principles theory", Materials Today Communications, Vol. 36, no., pp. 1-16, 2023. https://doi.org/10.1016/j.mtcomm.2023.106553
[9] V. A. Cao et al., "Enhanced Piezoelectric Output Performance of the SnS2/SnS Heterostructure Thin-Film Piezoelectric Nanogenerator Realized by Atomic Layer Deposition", ACS Nano, Vol. 15, no. 6, pp. 10428-10436, 2021. https://doi.org/10.1021/acsnano.1c02757
[10] Z. Luwei, W. Ning, and L. Yuliang, "Design, synthesis, and application of some two-dimensional materials", Chemical Science, Vol. 14, no. 20, pp. 5266-5290, 2023. https://doi.org/10.1039/d3sc00487b
[11] K. Karim et al., "Recent developments in emerging two-dimensional materials and their applications", Journal of Materials Chemistry C, Vol. 8, no. 2, pp. 387-440, 2020. https://doi.org/10.1039/c9tc04187g
[12] T. T. Quang, N. H. Linh, D. T. Hung, P. Q. Viet, N. T. Kien, and D. V. Truong, "Calculation mechanical, electronic and piezoelectric properties of monolayer sis material using density functional theory", Transport and Communications Science Journal, Vol. 75, no. 9, pp. 2264-2277, 2024. https://doi.org/10.47869/tcsj.75.9.3
[13] A. K. Ozyurt, D. Molavali, and H. Sahin, "Stable single layer structures of aluminum oxide: Vibrational and electronic characterization of magnetic phases", Computational Materials Science, Vol. 214, no., pp. 1-8, 2022. https://doi.org/10.1016/j.commatsci.2022.111745
[14] H. Chen, C. Tan, K. Zhang, W. Zhao, X. Tian, and Y. Huang, "Enhanced photocatalytic performance of ZnO monolayer for water splitting via biaxial strain and external electric field", Applied Surface Science, Vol. 481, no., pp. 1064-1071, 2019. https://doi.org/10.1016/j.apsusc.2019.03.105
[15] Y. Gao, S. Meng, Q. Yang, Z. Wang, B. Gao, and F. Yang, "Mechanical–chemical coupling in gas–surface interaction: A study of strain effects on the catalytic properties of SiO2", Physics of Fluids, Vol. 37, no. 2, pp. 064-078, 2025. https://doi.org/10.1063/5.0245036.
[16] M. Seal, N. Bose, and S. Mukherjee, "Application of GeO2 nanoparticle as electrically erasable memory and its photo catalytic behaviour", Materials Research Express, Vol. 5, no. 6, pp. 1061-1070, 2018. https://doi.org/10.1088/2053-1591/aac66b
[17] N. T. H. Nhung et al., "A novel synthesis of GeO2/Ge composite as an anode material for lithium-ion batteries", Chemical Physics Letters, Vol. 801, no., pp. 054-062, 2022. https://doi.org/10.1016/j.cplett.2022.139747
[18] L. Sun, Y. Liu, P. Wu, and W. Zhou, "Band structure and optical properties of MoS2/SnO2 hetero-bilayer from hybrid functional calculations", Materials Chemistry and Physics, Vol. 239, no., pp. 4061, 2020. https://doi.org/10.1016/j.matchemphys.2019.122071
[19] W. Z. Xiao, G. Xiao, and L. L. Wang, "A first-principles study of the SnO2 monolayer with hexagonal structure", J Chem Phys, Vol. 145, no. 17, pp. 174702, 2016. https://doi.org/10.1063/1.4966581
[20] T. T. Quang, N. H. Linh, N. M. Son, T. T. Hoa, V. V. Thanh, and D. V. Truong, "Mechanical, electronic, and thermoelectric properties of low-dimensional SnSx materials," in Proceedings of the 11th National Conference on Mechanics, Natural Science and Technology Publishing House, Hanoi, Viet Nam, 2022, pp. 406-413.
[21] G. Tse, "The structural, electronic, optical, elastic, and vibrational properties of GeS2 using HSE03: a first-principle investigation", Journal of Computational Electronics, Vol. 23, no. 5, pp. 968-976, 2024. https://doi.org/10.1007/s10825-024-02196-z
[22] P. Giannozzi et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials", J Phys Condens Matter, Vol. 21, no. 39, pp. 1-19, 2009. https://doi.org/10.1088/0953-8984/21/39/395502
[23] N. H. Linh, T. T. Quang, N. M. Son, N. V. Hoi, V. V. Thanh, and D. V. Truong, "First-principles study of electronic and optical properties and photocatalytic performance of MS monolayer under strain", Journal of science and technology technical universities, Vol. 33, no. 2, pp. 44-51, 2023. https://doi.org/10.51316/jst.165.etsd.2023.33.2.7
[24] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple", Physical Review Letters, Vol. 77, no. 18, pp. 3865-3868, 1996. https://doi.org/10.1103/PhysRevLett.77.3865
[25] H. J. Monkhorst and J. D. Pack, "Special points for Brillonin-zone integrations", Physical Review B, Vol. 13, no. 12, pp. 5188-5192, 1976. https://doi.org/10.1103/PhysRevB.13.5188
[26] D.T. Hung, N. H. Linh, T. T. Quang, and D. V. Truong, "Investigation of Electromechanical Properties of CF Monolayer," in Solid State Phenomena, vol. 368 Switzerland: Trans Tech Publications, 2024, pp. 3-8.
[27] T. V. Vu, H. V. Phuc, C. V. Nguyen, A. I. Kartamyshev, and N. N. Hieu, "A theoretical study on elastic, electronic, transport, optical and thermoelectric properties of Janus SnSO monolayer", Journal of Physics D: Applied Physics, Vol. 54, no. 47, pp. 2021. https://doi.org/10.1088/1361-6463/ac1d73
[28] T. N. Do, N. N. Hieu, N. A. Poklonski, N. T. Thanh Binh, C. Q. Nguyen, and N. D. Hien, "Computational insights into structural, electronic, and optical properties of Janus GeSO monolayer", RSC Adv, Vol. 11, no. 45, pp. 28381-28387, 2021. https://doi.org/10.1039/d1ra05424d
[29] F. Mouhat and F. X. Coudert, "Necessary and sufficient elastic stability conditions in various crystal systems", Physical Review B - Condensed American Physical Society, Vol. 90, no. 22, pp. 224104-4, 2014. https://doi.org/10.1103/PhysRevB.90.224104
[30] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, Vol. 321, no. 5887, pp. 385-8, 2008. https://doi.org/10.1126/science.1157996
[31] L. Song et al., "Large scale growth and characterization of atomic hexagonal boron nitride layers", Nano Lett, Vol. 10, no. 8, pp. 3209-15, 2010. https://doi.org/10.1021/nl1022139
[32] K. Liu et al., "Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures", Nano Lett, Vol. 14, no. 9, pp. 5097-103, 2014. https://doi.org/10.1021/nl501793a
[33] N. H. Linh, P. Q. Viet, T. T. Quang, D. T. Hung, and D. Van Truong, "First-principles analysis of mechanical, optoelectronics and piezoelectric properties in buckled honeycomb GeSe monolayer", Surface Science, Vol. 755, no., pp. 3217, 2025. https://doi.org/10.1016/j.susc.2025.122703
[34] M. Ruoho et al., "Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides", Nanomaterials (Basel), Vol. 10, no. 3, pp. 4675, 2020. https://doi.org/10.3390/nano10030558.

