Co-simulation-based evaluation of UAV obstacle avoidance using 3DVFH* and stereo cameras
Tóm tắt: 140
|
PDF: 98
##plugins.themes.academic_pro.article.main##
Author
-
Le Duong KhangThe University of Danang - University of Science and Technology, VietnamNguyen Ngoc TrungThe University of Danang - University of Science and Technology, VietnamNgo Viet Huy HoangThe University of Danang - University of Science and Technology, VietnamTran Thi Minh HanhThe University of Danang - University of Science and Technology, VietnamHuynh Thanh TungThe University of Danang - University of Science and Technology, VietnamDuy-Tuan DaoThe University of Danang - University of Science and Technology, Vietnam
Từ khóa:
Tóm tắt
The paper aims to simulate UAVs in complex network environments to evaluate their performance in obstacle avoidance using stereo sensors. Since there are strict security regulations limiting real-world UAV flight testing, this research addresses the critical need for comprehensive simulation-based approaches.. The system integrates real-time obstacle detection and avoidance algorithms, enabling UAVs to navigate safely in environments with obstacles. Developed on the ROS framework with PX4 SITL and Gazebo, the system supports comprehensive end-to-end testing, from stereo image acquisition to UAV navigation using the 3DVFH* algorithm. It utilizes the MAVLink protocol for control and QGroundControl for monitoring. Simulation results confirm the system’s effectiveness, establishing a solid foundation for advanced autonomous UAV navigation in real-world applications.
Tài liệu tham khảo
-
[1] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: Opportunities and challenges”, IEEE Commun. Mag., vol. 54, no. 5, pp. 36–42, May 2016. DOI: 10.1109/MCOM.2016.7470933.
[2] I. Bekmezci, O. K. Sahingoz, and S. Temel, “Flying ad-hoc networks (FANETs): A survey”, Ad Hoc Netw., vol. 11, no. 3, pp. 1254–1270, May 2013. DOI: 10.1016/j.adhoc.2012.12.004.
[3] D. Fabio, C. Santoro, and F. F. Santoro, “An integrated framework for the realistic simulation of multi-UAV applications”, Computers & Electrical Engineering, vol. 74, pp. 196–209, 2019. https://doi.org/10.1016/j.compeleceng.2019.01.016.
[4] K. Xiao, S. Tan, G. Wang, X. An, X. Wang, and X. Wang, “XTDrone: A customizable multi-rotor UAVs simulation platform”, in Proc. Int. Conf. Robot. Autom. Sci. (ICRAS), Chengdu, China, Jun. 2020, pp. 55–61. DOI: 10.1109/ICRAS49812.2020.9134922.
[5] S. Hrabar, “3D path planning and stereo-based obstacle avoidance for rotorcraft UAVs”, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), San Francisco, CA, USA, Sep. 2011, pp. 807–814.
[6] B. Ruf, S. Monka, M. Kollmann, and M. Grinberg, “Real-time on-board obstacle avoidance for UAVs based on embedded stereo vision”, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XLII-1, pp. 363–370, 2018.
[7] M. Ferrick, C. Fang, and B. Boots, “Deep stereo obstacle avoidance with monocular depth estimation for UAVs”, IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 2922–2929, Apr. 2021. DOI: 10.1109/LRA.2021.3062833.
[8] J. Vautherin, “PX4-Gazebo Simulator (Headless)”, GitHub Repository, 2023. [Online]. Available: https://github.com/JonasVautherin/px4-gazebo-headless [Accessed: Dec. 31, 2024].
[9] S. Tijmons, G. de Croon, B. Remes, C. De Wagter, and M. Mulder, “Obstacle avoidance strategy using onboard stereo vision on a flapping wing MAV”, arXiv preprint arXiv:1604.00833, 2016. [Online]. Available: https://arxiv.org/abs/1604.00833. [Accessed: Jan. 19, 2025].
[10] S. Tijmons, G. de Croon, B. Remes, C. De Wagter, and M. Mulder, “Stereo vision based obstacle avoidance on flapping wing MAVs”, in Advances in Aerospace Guidance, Navigation and Control, Springer, 2013, pp. 463–482. DOI: 10.1007/978-3-642-38253-6_25.
[11] M. Ferrara, G. Gennarelli, and M. Montanari, “Fast obstacle detection system for UAS based on complementary use of radar and stereoscopic camera”, Drones, vol. 6, no. 11, p. 361, 2022. DOI: 10.3390/drones6110361.
[12] S. Vanneste, B. Bellekens, and M. Weyn, “3DVFH+: Real-time three-dimensional obstacle avoidance using an Octomap”, in Proc. 9th Int. Conf. Intell. Environ., 2013, pp. 91–102.
[13] S. Waharte, N. Trigoni, and S. Julier, “Coordinated search with a swarm of UAVs”, in Proc. IEEE Int. Conf. Mobile Adhoc Sens. Syst. (MASS), Macau, China, Oct. 2009, pp. 1–6. DOI: 10.1109/MOBHOC.2009.5337011.
[14] QGroundControl Dev Team, “QGroundControl guide (daily build 5.0)”, QGroundControl Documentation. [Online]. Available: https://docs.qgroundcontrol.com/master/en/qgc-user-guide/index.html [Accessed: Jan. 19, 2025].
[15] PX4 Development Team, “Middleware”, PX4 Documentation. [Online]. Available: https://docs.px4.io/main/en/middleware/ [Accessed: Jan. 19, 2025].
[16] Open Source Robotics Foundation (OSRF), “Gazebo: Tutorials”, GazeboSim.org. [Online]. Available: https://classic.gazebosim.org/tutorials [Accessed: Jan. 19, 2025].
[17] ROS Community, “stereo_image_proc - ROS Wiki”, Ros.org. [Online]. Available: https://wiki.ros.org/stereo_image_proc. [Accessed: Apr. 08, 2025].
[18] OpenCV Dev Team, “Camera Calibration and 3D Reconstruction — OpenCV 2.4.13.7 documentation”, Opencv.org, 2019. https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereobm (Accessed Apr. 12, 2025).
[19] OpenCV Dev Team, “OpenCV: Depth Map from Stereo Images”, docs.opencv.org. https://docs.opencv.org/4.x/dd/d53/tutorial_py_depthmap.html. [Accessed: Apr. 12, 2025].
[20] ROS Community, “pcl - ROS Wiki”, Ros.org, 2024. https://wiki.ros.org/pcl (Accessed Apr. 13, 2025).
[21] T. Baumann, “Obstacle Avoidance for Drones Using a 3DVFH* Algorithm”, M.S. thesis, Dept. of Computer Science, ETH Zurich, Zurich, Switzerland, 2018.

