Influences of alloy composition and scratching depths on the deformation behavior of FeNiCoCrCux high-entropy alloys under nanoindentation and nanoscratch
Tóm tắt: 352
|
PDF: 74
##plugins.themes.academic_pro.article.main##
Author
-
Pham Van TrungThe University of Danang - University of Science and Technology, Danang, VietnamLuu Duc BinhThe University of Danang - University of Science and Technology, Danang, VietnamTao Quang BangThe University of Danang - University of Science and Technology, Danang, VietnamNguyen Van ThoThe University of Danang - University of Science and Technology, Danang, VietnamTu Quang DucThe University of Danang - University of Science and Technology, Danang, Vietnam
Từ khóa:
Tóm tắt
The influence of alloy composition and scratching depth in terms of mechanical properties and microstructural changes of FeNiCoCrCu high-entropy alloys (HEAs) is investigated and evaluated through nanoindentation and nanoscratch techniques via molecular dynamics (MD). The influence of these factors is analyzed by investigating applied force, atomic shear deformation, microstructural alterations, dislocation behavior, and elastic restoration capacity. It is highlighted that the primary mode of deformation throughout the indentation and scratching of FeNiCoCrCu alloys involves the initiation and spread of dislocations and stacking faults. The forces during indentation and scratching generally rise with decreasing Cu content and increasing scratch depth. Additionally, the displacement of atoms in diverse directions results in distinct pile-up morphologies.
Tài liệu tham khảo
-
[1] E. P. George, D. Raabe, and R. O. Ritchie, “High-entropy alloys”, Nat. Rev. Mater., vol. 4, no. 8, pp. 515–34, 2019.
[2] B. Yin, F. Maresca, and W. A. Curtin, “Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys”, Acta Mater., vol. 188, pp. 486–91, 2020.
[3] W. R. Wang, W. L. Wang, S. C. Wang, Y. C. Tsai, C. H. Lai, and J. W. Yeh, “Effects of Al addition on the microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys”, Intermetallics, vol. 26, pp. 44–51, 2012.
[4] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E. P. George, “The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy”, Acta Mater., vol. 61, no. 15, pp. 5743–5755, 2013.
[5] C. Han, Q. Fang, Y. Shi, S. B. Tor, C. K. Chua, and K. Zhou, “Recent advances in high entropy alloys for 3D printing”, Adv. Mater., vol. 32, no. 26, pp. 1–10, 2020.
[6] S. Picak et al., “The low-cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure”, Acta Mater., vol. 205, pp. 116540, 2021.
[7] G. Jin et al., “High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating”, Appl. Surf. Sci., vol. 445, pp. 113–122, 2018.
[8] A. S. Makarov, R. A. Konchakov, Y. P. Mitrofanov, M. A. Kretova, N. P. Kobelev, and V. A. Khonik, “A simple kinetic parameter indicating the origin of the relaxations induced by point(-like) defects in metallic crystals and glasses”, J. Phys. Condens. Matter., vol. 32, no. 49, pp. 495701, 2020.
[9] J. Menghani, A. Vyas, P. Patel, H. Natu, and S. More, “Wear, erosion and corrosion behavior of laser cladded high entropy alloy coatings – a review”, Mater. Today Proc., vol. 38, pp. 2824–2829, 2021.
[10] S. Singh, S. M. Shaikh, P. Kumar M. K., B. S. Murty, and C. Srivastava, “Microstructural homogenization and substantial improvement in corrosion resistance of mechanically alloyed FeCoCrNiCu high entropy alloys by incorporation of carbon nanotubes”, Materialia, vol. 14, pp. 100917, 2020.
[11] O. R. Deluigi, R. C. Pasianot, F. J. Valencia, A. Caro, D. Farkas, and E. M. Bringa, “Simulations of primary damage in a High Entropy Alloy: probing enhanced radiation resistance”, Acta Mater., vol. 213, pp. 116951, 2021.
[12] V. T. Pham, T. N. Vu, D. B. Luu, V. T. Hoang, and Q. B. Tao, “Effects of temperature, punch angle, and loading velocity on mechanical properties of nanoimprinted FeNiCoCrCux high-entropy alloys”, Mater. Today Commun., vol. 38, pp. 107692, 2024.
[13] G. Luo et al., “Microstructural evolution and mechanical properties of FeCoCrNiCu high entropy alloys: a microstructure-based constitutive model and a molecular dynamics simulation study”, Appl. Math. Mech., vol. 42, no. 8, pp. 1109–1122, 2021.
[14] Y. Cai, Y. Chen, Z. Luo, F. Gao, and L. Li, “Manufacturing of FeCoCrNiCux mediumentropy alloy coating using laser cladding technology”, Mater. Des., vol. 133, pp. 91–108, 2017.
[15] C. Shang, E. Axinte, W. Ge, Z. Zhang, and Y. Wang, “High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering”, Surf. Interfaces, vol. 9, pp. 36–43, 2017.
[16] A. Verma et al., “High temperature wear in CoCrFeNiCux high entropy alloys: the role of Cu”, Scr. Mater., vol. 161, pp. 28–31, 2019.
[17] J. Joseph, N. Stanford, P. Hodgson, and D. M. Fabijanic, “Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy”, Scr. Mater., vol. 129, pp. 30–34, 2017.
[18] R. Sonkusare, R. Jain, K. Biswas, V. Parameswaran, and N. P. Gurao, “High strain rate compression behaviour of single phase CoCuFeMnNi high entropy alloy”, J. Alloys Compd., vol. 823, pp. 153763, 2020.
[19] Q. Fang, M. Yi, J. Li, B. Liu, and Z. Huang, “Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation”, Appl. Surf. Sci., vol. 443, pp. 122–130, 2018.
[20] C. Zhu, Z. P. Lu, and T. G. Nieh, “Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy”, Acta Mater., vol. 61, pp. 2993–3001, 2013.
[21] C. Peng, F. Zeng, B. Yuan, and Y. Wang, “An MD simulation study to the indentation size effect of polystyrene and polyethylene with various indenter shapes and loading rates”, Appl. Surf. Sci., vol. 492, pp. 579–590, 2019.
[22] D. Q. Doan, T. H. Fang, and T. H. Chen, “Nanotribological characteristics and strain hardening of amorphous Cu64Zr36/ crystalline Cu nanolaminates”, Tribol. Int., vol. 147, pp. 106275, 2020.
[23] D. Q. Doan, T. H. Fang, and T. H. Chen, “Interfacial and mechanical characteristics of TiN/Al composites under nanoindentation”, Int. J. Solid Struct., vol. 226, pp. 1–17, 2021.
[24] J. Li, B. Liu, H. Luo, Q. Fang, Y. Liu, and Y. Liu, “A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates”, Comput. Mater. Sci., vol. 118, pp. 66–76, 2016.
[25] K. Sun, L. Fang, Z. Yan, and J. Sun, “Atomistic scale tribological behaviors in nano-grained and single crystal copper systems”, Wear, vol. 303, pp. 191–201, 2013.
[26] P. Z. Zhu, C. Qiu, F. Z. Fang, D. Yuan, and X. C. Shen, “Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy”, Appl. Surf. Sci., vol. 317, pp. 432–442, 2014.
[27] L. Zhang and Y. Shibuta, “Inverse Hall-Petch relationship of high-entropy alloy by atomistic simulation”, Mater. Lett., vol. 274, pp. 1–7, 2020.
[28] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, J. Comput. Phys., vol. 117, no. 1, pp. 1–19, 1995.
[29] D. Q. Doan, T. H. Fang, and T. H. Chen, “Microstructure and composition dependence of mechanical characteristics of nanoimprinted AlCoCrFeNi high-entropy alloys”, Sci. Rep., vol. 11, pp. 13680, 2021.
[30] D. Q. Doan, T. H. Fang, T. H. Chen, and T. X. Bui, “Effects of void and inclusion sizes on mechanical response and failure mechanism of AlCrCuFeNi2 high-entropy alloy”, Eng. Fract. Mech., vol. 252, pp. 107848, 2021.
[31] K. E. Avila, S. Küchemann, I. A. Alhafez, and H. M. Urbassek, “Nanoscratching of metallic glasses–An atomistic study”, Tribol. Int., vol. 139, pp. 1–11, 2019.
[32] D. Q. Doan, T. H. Fang, A. S. Tran, and T. H. Chen, “High deformation capacity and dynamic shear band propagation of imprinted amorphous Cu50Zr50/crystalline Cu multilayered nanofilms”, J. Phys. Chem. Solids, vol. 138, pp. 109291, 2019.
[33] R. Pasianot and D. Farkas, “Atomistic modeling of dislocations in a random quinary high-entropy alloy”, Comput. Mater. Sci., vol. 173, pp. 109366, 2020.
[34] H. Feng et al., “Indentation-induced plastic behaviour of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminate: an atomic simulation”, RSC Adv., vol. 10, no. 16, pp. 9187–9192, 2020.
[35] O. Elgack, B. Almomani, J. Syarif, M. Elazab, M. Irshaid, and M. Al-Shabi, “Molecular dynamics simulation and machine learning-based analysis for predicting tensile properties of high-entropy FeNiCrCoCu alloys”, J. Mater. Res. Technol., vol. 25, pp. 5575–5585, 2023.
[36] J. Jiang, W. Sun, and N. Luo, “Atomic insights into effects of temperature and grain diameter on the micro-deformation mechanism, mechanical properties and sluggish diffusion of nanocrystalline high-entropy alloys”, Mater. Today Commun., vol. 33, pp. 104224, 2022.
[37] L. Xie, P. Brault, A. L. Thomann, and J. M. Bauchire, “AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: a classical molecular dynamics simulation study”, Appl. Surf. Sci., vol. 285, pp. 810–816, 2013.
[38] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool”, Model. Simul. Mater. Sci. Eng., vol. 18, no. 1, pp. 015012, 2009.
[39] D. Faken and H. Jonsson, “Systematic analysis of local atomic structure combined with 3D computer graphics”, Comput. Mater. Sci., vol. 2, no. 2, pp. 279–286, 1994.
[40] D. Wang, J. Lee, K. Holland, T. Bibby, S. Beaudoin, and T. Cale, “Von mises stress in chemical-mechanical polishing processes”, J. Electrochem. Soc., vol. 144, no. 3, pp. 1121, 1997.
[41] V. T. Pham and T. H. Fang, “Interfacial mechanics and shear deformation of indented germanium on silicon (001) using molecular dynamics”, Vacuum, vol. 173, pp. 109184, 2020.
[42] A. Mu et al., “Nanoindentation into FeCoNiCrCu high-entropy alloy: an atomistic study”, Mater. Sci. Technol., vol. 37, no. 2, pp. 202–209, 2021.
[43] P. Liu, D. Sun, and Q. Wang, “An atomic-level understanding of the friction and wear behaviors of Ti2AlN/TiAl composite via MD simulations”, Tribol. Int., vol. 137, pp. 340–348, 2019.

