Cấu trúc và hoạt tính chống oxy hoá của một số hợp chất flavonoid phân lập từ lá cây mơ lông (Paederia lanuginosa) thu hái tại Quảng Nam, Việt Nam
##plugins.themes.academic_pro.article.main##
Author
-
Nguyễn Quang TrungTrường Đại học Sư phạm - Đại học Đà Nẵng; Trung tâm Kỹ thuật Tiêu chuẩn Đo lường Chất lượng 2, Việt NamĐào Hùng CườngTrường Đại học Sư phạm - Đại học Đà Nẵng, Đà Nẵng, Việt NamVõ Văn QuânTrường Đại học Sư phạm Kỹ thuật - Đại học Đà Nẵng, Đà Nẵng, Việt Nam
Từ khóa:
Tóm tắt
Từ dịch chiết EtOAC của lá cây Mơ lông (Paederia Lanuginose) đã phân lập được ba hợp chất flavonoid, gồm kaempferol (KF), quercetin (QCT) và quercitrin (QCTR). Cấu trúc của các hợp chất này được xác định bằng các dữ liệu phổ NMR kết hợp với tài liệu tham khảo. Hoạt tính chống oxy hoá của các hợp chất trong môi trường nước (pH 7,4) cũng đã được đánh giá thông qua phương pháp tính toán hoá học. Kết quả cho thấy, cả ba hợp chất được phân lập thể hiện hoạt tính chống oxy hoá tốt với hằng số tốc độ phản ứng bắt gốc tự do tổng quát lần lượt là 6,2×106, 8,0×106 và 1,4×106. Trạng thái dianion của các hợp chất trong môi trường nước (pH 7,4) là thành phần chính đóng góp vào khả năng bắt gốc tự do của các hợp chất này, trong khi đó vai trò của trạng thái anion là không đáng kể. Bên cạnh đó, nhóm thế hydroxyl tại vị trí O‒3ʹ cũng như liên kết glycosidic tại vị trí O‒3 của hợp chất KF không ảnh hưởng đến hoạt tính chống oxy hoá của các hợp chất nghiên cứu.
Tài liệu tham khảo
-
[1] Ishikura, Z. Yang, K. Yoshitama, and K. Kurosawa, "Flavonol glycosides from Paederia scandens var. mairei", Zeitschrift für Naturforschung C, vol. 45, no. 11, pp. 1081-1084, 1990.
[2] Chifumi, et al., "Secondary Metabolites in the Leaves of Paederia lanuginosa Wall", the Japanese journal of pharmacognosy, vol. 65, no. 1, pp. 52-53, 2011.
[3] H. He, J. S. Chen, X. L. Wang, and K. Y. Ding, "A new iridoid glycoside from Paederia scandens", Chinese Chemical Letters, vol. 21, no. 4, pp. 437-439, 2010.
[4] -W. Chin, K.-D. Yoon, M. Ahn, and J.-W. Kim, "Two new phenylpropanoid glycosides from the aerial parts of Paederia scandens", Bulletin of the Korean Chemical Society, vol. 31, no. 4, pp. 1070-1072, 2010.
[5] L. Kim, Y.-W. Chin, J. Kim, and J. H. Park, "Two new acylated iridoid glucosides from the aerial parts of Paederia scandens", Chemical and pharmaceutical bulletin, vol. 52, no. 11, pp. 1356-1357, 2004.
[6] Zou, S. Peng, X. Liu, B. Bai, and L. Ding, "Sulfur-containing iridoid glucosides from Paederia scandens", Fitoterapia, vol. 77, no. 5, pp. 374-377, 2006.
[7] N. Quang, "Anthraquinones from the roots of Paederia scandens", Vietnam Journal of Chemistry, vol. 47, no. 1, pp. 95-95, 2009.
[8] Ramadhan, A. K. Wardani, B. S. Dlamini, and C. Chang, "Anthraquinone derivatives and its antibacterial properties from Paederia foetida stems", The Natural Products Journal, vol. 11, no. 2, pp. 193-199, 2021.
[9] Zhang, H.-F. Zhou, M.-Y. Li, X.-Y. Yue, and T. Wu, "Three new anthraquinones from aerial parts of Paederia scandens", Chemistry of Natural Compounds, vol. 54, pp. 245-248, 2018.
[10] Ainong, G. Fajun, and L. Dingshu, "Studies on the chemical constituents of the essential oil form fresh Paederia scandens (Lour.) Merr", Journal of Hubei Institute for Nationalities (Natural Science), vol. 21, no. 1, pp. 41-43, 2003.
[11] Wong and GL Tan, "Steam volatile constituents of the aerial parts of Paederia foetida L", Flavour and fragrance journal, vol. 9, no. 1 pp. 25-28, 1994.
[12] Yang, Q. Z. Liu, Z. L. Liu, and S. S. Du, "GC-MS analysis of insecticidal essential oil of aerial parts of Paederia scandens (Lour) Merrill (Rubiaceae)", Tropical Journal of Pharmaceutical Research, vol. 11, no. 3, pp. 461-467, 2012.
[13] Gentile, et al., "Dietary flavonoids as a potential intervention to improve redox balance in obesity and related co-morbidities: a review", Nutrition research reviews, vol. 31, no. 2, pp. 239-247, 2018.
[14] Guven, A. Arici, and O. Simsek, "Flavonoids in our foods: a short review", Journal of Basic and Clinical Health Sciences, vol. 3, pp. 96-106, 2019.
[15] He et al., "Citrus aurantium L. and its flavonoids regulate TNBS-induced inflammatory bowel disease through anti-inflammation and suppressing isolated jejunum contraction", International journal of molecular sciences, vol. 19, no. 10, p. 3057, 2018.
[16] Andarwulan, R. Batari, D. A. Sandrasari, B. Bolling, and H. Wijaya, "Flavonoid content and antioxidant activity of vegetables from Indonesia", Food chemistry, vol. 121, no. 4, pp. 1231-1235, 2010.
[17] -H. Chu, C.‐L. Chang, and H.‐F. Hsu, "Flavonoid content of several vegetables and their antioxidant activity", Journal of the Science of Food and Agriculture, vol. 80, no. 5, pp. 561-566, 2000.
[18] Shen et al., "Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity", Food Chemistry, vol. 383, p. 132531, 2022.
[19] Xiao et al., "Relationships between structure and antioxidant capacity and activity of glycosylated flavonols", Foods, vol. 10, no. 4, p. 849, 2021.
[20] Alvareda, P. A. Denis, F. Iribarne, and M. Paulino, "Bond dissociation energies and enthalpies of formation of flavonoids: A G4 and M06-2X investigation", Comput. Theor. Chem., vol. 1091, pp. 18-23, 2016.
[21] A Denis, "Coupled cluster, B2PLYP and M06-2X investigation of the thermochemistry of five-membered nitrogen containing heterocycles, furan, and thiophene", Theor. Chem. Acc., vol. 129, no. 2, pp. 219-227, 2011.
[22] Galano, "Free radicals induced oxidative stress at a molecular level: The current status, challenges and perspectives of computational chemistry based protocols", Journal of the Mexican Chemical Society, vol. 59, pp. 231-262, 2015.
[23] Galano and J. R. Alvarez‐Idaboy, "Computational strategies for predicting free radical scavengers' protection against oxidative stress: Where are we and what might follow?", Int. J. Quantum Chem., vol. 119, no. 2, p. e25665, 2019.
[24] T. N. Hang, N. T. Hoa, H. N. Bich, A. Mechler, and Q. V. Vo, "The hydroperoxyl radical scavenging activity of natural hydroxybenzoic acids in oil and aqueous environments: Insights into the mechanism and kinetics", Phytochemistry, vol. 201, p. 113281, 2022.
[25] Q. Trung, A. Mechler, N. T. Hoa, and Q. V. Vo, "Calculating bond dissociation energies of X− H (X= C, N, O, S) bonds of aromatic systems via density functional theory: a detailed comparison of methods", Royal Society Open Science, vol. 9, p. 220177, 2022.
[26] Galano and J. R. Alvarez‐Idaboy, "A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity", Journal of computational chemistry, vol. 34, no. 28, pp. 2430-2445, 2013.
[27] Leopoldini, N. Russo, and M. Toscano, "The molecular basis of working mechanism of natural polyphenolic antioxidants", Food chemistry, vol. 125, no. 2, pp. 288-306, 2011.
[28] Nenadis and M. Z Tsimidou, "Contribution of DFT computed molecular descriptors in the study of radical scavenging activity trend of natural hydroxybenzaldehydes and corresponding acids", Food research international, vol. 48, no. 2, pp. 538-543, 2012.
[29] M. Thong et al., "Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): A theoretical study", Chemical Physics Letters, vol. 625, pp. 30-35, 2015.
[30] J S Wright 1, E R Johnson, and G A DiLabio, "Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants", Journal of the American Chemical Society, 123, no. 6, pp. 1173-1183, 2001.
[31] Alessandro, F. Rastrelli, and G. Saielli, "Toward the complete prediction of the 1H and 13C NMR spectra of complex organic molecules by DFT methods: application to natural substances", Chemistry–A European Journal, vol. 12, no. 21, pp. 5514-5525, 2006.
[32] Galano and J. R. Alvarez‐Idaboy, "Computational strategies for predicting free radical scavengers' protection against oxidative stress: where are we and what might follow?", International Journal of Quantum Chemistry, vol. 119, no. 2, p. e25665, 2019.
[33] V. Vo and A. Mechler, "In silico study of the radical scavenging activities of natural indole-3-carbinols", Journal of Chemical Information and Modeling, vol. 60, no. 1, pp. 316-321, 2019.
[34] Galano and J. R. Alvarez‐Idaboy, "Kinetics of radical‐molecule reactions in aqueous solution: A benchmark study of the performance of density functional methods", Journal of computational chemistry, vol. 35, no. 28, pp. 2019-2026, 2014.
[35] V. Vo et al., "A theoretical study of the radical scavenging activity of natural stilbenes", RSC advances, vol. 9, pp. 42020-42028, 2019.
[36] V. Vo et al., "A thermodynamic and kinetic study of the antioxidant activity of natural hydroanthraquinones", RSC advances, vol. 10, no. 34, pp. 20089-20097, 2020.
[37] Dzib et al., "Eyringpy: A program for computing rate constants in the gas phase and in solution", International Journal of Quantum Chemistry, vol. 119, no. 2, p. e25686, 2019.
[38] Galano and J. R. Alvarez-Idaboy, "Kinetics of radical-molecule reactions in aqueous solution: A benchmark study of the performance of density functional methods", J. Comput. Chem., vol. 35, no. 28, pp. 2019-2026, 2014.
[39] V. Vo et al., "Theoretical and Experimental Studies of the Antioxidant and Antinitrosant Activity of Syringic Acid", J. Org. Chem., vol. 85, no. 23, pp. 15514–15520, 2020.
[40] Galano et al., "Empirically fitted parameters for calculating p K a values with small deviations from experiments using a simple computational strategy", Journal of Chemical Information and Modeling, vol. 56, no. 9, pp. 1714-1724, 2016.
[41] Boulebd, A. Mechler, N. T. Hoa, and Q. V. Vo, "Thermodynamic and kinetic studies of the antiradical activity of 5-hydroxymethylfurfural: computational insights", New Journal of Chemistry, no. 23, pp. 4-8, 2020.
[42] Dzib, et al., Eyringpy 1.0.2, 2018, Cinvestav, Mérida, Yucatán, 2018.
[43] G. Evans and M. Polanyi, "Some applications of the transition state method to the calculation of reaction velocities, especially in solution", Trans. Faraday Soc., vol. 31, pp. 875-894, 1935.
[44] Eyring, "The Activated Complex in Chemical Reactions", J. Chem. Phys., vol. 3, no. 2, pp. 107-115, 1935.
[45] F. Özaltın, I U Gur, I. De, V Aviyente, "Role of chain transfer agents in free radical polymerization kinetics", Macromolecules, vol. 43, pp. 1823-1835, 2010.
[46] G. Truhlar, W. L. Hase and J. T. Hynes, "Current Status of Transition-State Theory", J. Phys. Chem., vol. 87, no. 15, pp. 2664-2682, 1983.
[47] Vélez et al., "A computational study of stereospecifity in the thermal elimination reaction of menthyl benzoate in the gas phase", J. Phys. Org. Chem., vol. 22, no. 10, pp. 971-977, 2009.
[48] Fernández-Ramos et al., "Symmetry numbers and chemical reaction rates", Theor. Chem. Acc., vol. 118, pp. 813-826, 2007.
[49] Pollak and P. Pechukas, "Symmetry numbers, not statistical factors, should be used in absolute rate theory and in Broensted relations", J. Am. Chem. Soc., vol. 100, no. 10, pp. 2984-2991, 1978.
[50] Eckart, "The penetration of a potential barrier by electrons", Phy. Rev., vol. 35, no. 11, p. 1303, 1930.
[51] Lu, A. Wang, P. Shi, H. Zhang, and Z. Li, "Quantum chemical study on the antioxidation mechanism of piceatannol and isorhapontigenin toward hydroxyl and hydroperoxyl radicals", PloS one, vol. 10, p. e0133259, 2015.
[52] A. Marcus, "Chemical and electrochemical electron-transfer theory", Annual review of physical chemistry, vol. 15, pp. 155-196, 1964.
[53] A. Marcus, "Electron transfer reactions in chemistry. Theory and experiment", Reviews of modern physics, vol. 65, p. 599, 1993.
[54] C Collins and G. E Kimball, "Diffusion-controlled reaction rates", Journal of colloid science, vol. 4, no. 4, pp. 425-437, 1949.
[55] M v Smoluchowski, "Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen", Zeitschrift für physikalische Chemie, 92, pp. 129-168, 1918.
[56] G Truhlar, "Nearly encounter-controlled reactions: The equivalence of the steady-state and diffusional viewpoints", Journal of Chemical Education, vol. 62, no. 2, p. 104, 1985.
[57] Einstein, "Veber die von der molekular theorethischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen", Ann. der Phys.(4), vol. 17, pp. 1904, 549.
[58] G. Stokes, reprinted in: Mathematical and Physical Papers, vol. 5, Cambridge University Press, Cambridge, 1905.
[59] Boulebd et al., "Thermodynamic and kinetic studies of the radical scavenging behavior of hydralazine and dihydralazine: theoretical insights", The Journal of Physical Chemistry B, vol. 124, no. 20, pp. 4123-4131, 2020.
[60] Carreon‐Gonzalez, A. Vivier‐Bunge, and J. R. Alvarez‐Idaboy, "Thiophenols, promising scavengers of peroxyl radicals: mechanisms and kinetics", Journal of Computational Chemistry, vol. 40, no. 24, pp. 2103-2110, 2019.
[61] Zhao and D. G Truhlar, "How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals?", The Journal of Physical Chemistry A, vol. 112, no. 6, pp. 1095-1099, 2008.
[62] Galano and J. R. Alvarez‐Idaboy, "A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity", J. Comput. Chem., vol. 34, no. 28, pp. 2430-2445, 2013.
[63] Nowicki et al., "DFT study of trialkylborohydride-catalysed hydrosilylation of alkenes–the mechanism and its implications", Catal. Sci. Technol., vol. 10, no. 4, pp. 1066-1072, 2020.
[64] Lin, X. Huang and Z. Lv, "Isolation and identification of flavonoids components from Pteris vittata L", SpringerPlus, vol. 5, pp. 1-3, 2016.
[65] K. Agrawal, "NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides", Phytochemistry, vol. 31, no. 10, pp. 3307-3330, 1992.
[66] A. Eldahshan, "Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt", Curr Res J Biol Sci, vol. 3, no. 1, pp. 52-55, 2011.
[67] Álvarez-Diduk, M. T. Ramírez-Silva, A. Galano, and A. Merkoçi, "Deprotonation mechanism and acidity constants in aqueous solution of flavonols: a combined experimental and theoretical study", The Journal of Physical Chemistry B, vol. 117, no. 41, pp. 12347-12359, 2013.
[68] E. Alberto et al., "A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment", Physical Chemistry Chemical Physics, vol. 15, no. 13, pp. 4642-4650, 2013.
[69] C. Iuga, J. R. Alvarez-Idaboy, and . Russo, "Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study", The Journal of organic chemistry, vol. 77, no. 8, pp. 3868-3877, 2012.