Approaches to thermodynamic property calculation of complex fluids: literature review
##plugins.themes.academic_pro.article.main##
Author
-
Nguyen Thanh BinhThe University of Danang - University of Science and Technology, Vietnam
Từ khóa:
Tóm tắt
Thermophysical properties of industrially complex fluids whose composition is always ill-defined are in practice predicted by using thermodynamic models. To ensure the prediction accurately and reliably, a three-step procedure to obtain the properties of these fluids must be validated. The focus of this study is laid on a short review of tools which can be served for each of the three steps. It should be noted that the tools presented in this work are centered on the ones applicable for highly associating and/or polar fluids. It is also recommended in this work an approach for characterizing a pseudocomponent representative of a complex mixture, e.g. petroleum fluids, biomass fluids, considering the available analytical data. This fully described pseudocomponent can be easily used within any thermodynamic models
Tài liệu tham khảo
-
[1] Hendriks et al., “Industrial Requirements for Thermodynamics and Transport Properties”, Ind Eng Chem Res, vol. 49, no. 22, pp. 11131–11141, Nov. 2010, doi: 10.1021/ie101231b.
[2] M. R. Riazi, Characterization and Properties of Petroleum Fractions. Philadelphia: ASTM, 2005.
[3] G. W. Huber, S. Iborra, and A. Corma, “Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering”, Chem Rev, vol. 106, no. 9, pp. 4044–4098, Sep. 2006, doi: 10.1021/cr068360d.
[4] D. L. Katz and G. G. Brown, “Vapor Pressure and Vaporization of Petroleum Fractions”, Ind Eng Chem, vol. 25, no. 12, pp. 1373–1384, Dec. 1933, doi: 10.1021/ie50288a018.
[5] J. D. Van der Waals, “On the Continuity of the Gaseous and Liquid States”, Universiteit Leiden, Leiden, 1873.
[6] Y. S. Wei and R. J. Sadus, “Equations of state for the calculation of fluid‐phase equilibria”, AIChE Journal, vol. 46, no. 1, pp. 169–196, Jan. 2000, doi: 10.1002/aic.690460119.
[7] J. O. Valderrama, “The State of the Cubic Equations of State”, Ind Eng Chem Res, vol. 42, no. 8, pp. 1603–1618, Apr. 2003, doi: 10.1021/ie020447b.
[8] G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state”, Chem Eng Sci, vol. 27, no. 6, pp. 1197–1203, Jun. 1972, doi: 10.1016/0009-2509(72)80096-4.
[9] D.-Y. Peng and D. B. Robinson, “A New Two-Constant Equation of State”, Industrial & Engineering Chemistry Fundamentals, vol. 15, no. 1, pp. 59–64, Feb. 1976, doi: 10.1021/i160057a011.
[10] W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, “SAFT: Equation-of-state solution model for associating fluids”, Fluid Phase Equilib, vol. 52, pp. 31–38, Dec. 1989, doi: 10.1016/0378-3812(89)80308-5.
[11] W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, “New reference equation of state for associating liquids”, Ind Eng Chem Res, vol. 29, no. 8, pp. 1709–1721, Aug. 1990, doi: 10.1021/ie00104a021.
[12] G. M. Kontogeorgis and G. K. Folas, Thermodynamic Models for Industrial Applications. Wiley, 2010. doi: 10.1002/9780470747537.
[13] E. A. Müller and K. E. Gubbins, “Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches”, Ind Eng Chem Res, vol. 40, no. 10, pp. 2193–2211, May 2001, doi: 10.1021/ie000773w.
[14] I. G. Economou, “Statistical Associating Fluid Theory: A Successful Model for the Calculation of Thermodynamic and Phase Equilibrium Properties of Complex Fluid Mixtures”, Ind Eng Chem Res, vol. 41, no. 5, pp. 953–962, Mar. 2002, doi: 10.1021/ie0102201.
[15] S. P. Tan, H. Adidharma, and M. Radosz, “Recent Advances and Applications of Statistical Associating Fluid Theory”, Ind Eng Chem Res, vol. 47, no. 21, pp. 8063–8082, Nov. 2008, doi: 10.1021/ie8008764.
[16] M. S. Wertheim, “Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres”, J Chem Phys, vol. 85, no. 5, pp. 2929–2936, Sep. 1986, doi: 10.1063/1.451002.
[17] M. S. Wertheim, “Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations”, J Stat Phys, vol. 35, no. 1–2, pp. 35–47, Apr. 1984, doi: 10.1007/BF01017363.
[18] G. M. Kontogeorgis, E. C. Voutsas, I. V Yakoumis, and D. P. Tassios, “An Equation of State for Associating Fluids”, Ind Eng Chem Res, vol. 35, no. 11, pp. 4310–4318, Jan. 1996, doi: 10.1021/ie9600203.
[19] H. P. Gros, S. Bottini, and E. A. Brignole, “A group contribution equation of state for associating mixtures”, Fluid Phase Equilib, vol. 116, no. 1, pp. 537–544, 1996, doi: https://doi.org/10.1016/0378-3812(95)02928-1.
[20] S. O. Derawi, M. L. Michelsen, G. M. Kontogeorgis, and E. H. Stenby, “Application of the CPA equation of state to glycol/hydrocarbons liquid–liquid equilibria”, Fluid Phase Equilib, vol. 209, no. 2, pp. 163–184, 2003, doi: https://doi.org/10.1016/S0378-3812(03)00056-6.
[21] S. O. Derawi, G. M. Kontogeorgis, M. L. Michelsen, and E. H. Stenby, “Extension of the Cubic-Plus-Association Equation of State to Glycol−Water Cross-Associating Systems”, Ind Eng Chem Res, vol. 42, no. 7, pp. 1470–1477, Apr. 2003, doi: 10.1021/ie0206103.
[22] I. V Yakoumis, G. M. Kontogeorgis, E. C. Voutsas, and D. P. Tassios, “Vapor-liquid equilibria for alcoholhydrocarbon systems using the CPA Equation of state”, Fluid Phase Equilib, vol. 130, no. 1, pp. 31–47, 1997, doi: https://doi.org/10.1016/S0378-3812(96)03200-1.
[23] M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson, “Correlation and prediction of dense fluid transport coefficients. I. n-alkanes”, Int J Thermophys, vol. 13, no. 2, pp. 269–281, 1992.
[24] T.-B. Nguyen, N. Riesco, and V. Vesovic, “Predicting the viscosity of n-alkane liquid mixtures based on molecular description”, Fuel, vol. 208, pp. 363–376, 2017.
[25] J. F. Ely and H. J. M. Hanley, “Prediction of Transport Properties of Petroleum Fractions. 1. Viscosity of Fluids and Mixtures”, Ind. Eng. Chem. Fundamen., vol. 20, pp. 323–332, 1981.
[26] A. Allal, C. Boned, and A. Baylaucq, “Free-Volume Viscosity Model for Fluids in the Dense and Gaseous States”, Phys. Rev. E, vol. 64, p. 11203, 2001.
[27] S. E. Quinones-Cisneros and U. K. Deiters, “Generalization of the Friction Theory for Viscosity Modeling”, J. Phys. Chem. B, vol. 110, pp. 12820–12834, 2006.
[28] W. D. Monnery, W. Y. Svrcek, and A. K. Mehrotra, “Viscosity: A critical review of practical predictive and correlative methods”, Can J Chem Eng, vol. 73, no. 1, pp. 3–40, Feb. 1995, doi: https://doi.org/10.1002/cjce.5450730103.
[29] J. H. Dymond, “The interpretation of transport coefficients on the basis of the Van der Waals model. I dense fluids”, Physica, vol. 75, no. 1, pp. 100–114, 1974, doi: 10.1016/0031-8914(74)90294-8.
[30] T.-B. Nguyen and V. Vesovic, “Predicting the viscosity of liquid mixtures consisting of n-alkane, alkylbenzene and cycloalkane species based on molecular description”, Fluid Phase Equilib, vol. 487, pp. 58–70, 2019.
[31] N. von Solms, M. L. Michelsen, and G. M. Kontogeorgis, “Computational and Physical Performance of a Modified PC-SAFT Equation of State for Highly Asymmetric and Associating Mixtures”, Ind Eng Chem Res, vol. 42, no. 5, pp. 1098–1105, Mar. 2003, doi: 10.1021/ie020753p.
[32] N. Ferrando, J.-C. de Hemptinne, P. Mougin, and J.-P. Passarello, “Prediction of the PC-SAFT Associating Parameters by Molecular Simulation”, J Phys Chem B, vol. 116, no. 1, pp. 367–377, Jan. 2012, doi: 10.1021/jp209313a.
[33] H. W. Xiang, The Corresponding-States Principle and its Practice. Amsterdam: Elsevier, 2005. doi: 10.1016/B978-0-444-52062-3.X5000-3.
[34] T. W. Leland and P. S. Chappelear, “THE CORRESPONDING STATES PRINCIPLE—A REVIEW OF CURRENT THEORY AND PRACTICE”, Ind Eng Chem, vol. 60, no. 7, pp. 15–43, Jul. 1968, doi: 10.1021/ie50703a005.
[35] B. I. Lee and M. G. Kesler, “A generalized thermodynamic correlation based on three-parameter corresponding states”, AIChE Journal, vol. 21, no. 3, pp. 510–527, May 1975, doi: https://doi.org/10.1002/aic.690210313.
[36] A. Bouza, C. M. Colina, and C. G. Olivera-Fuentes, “Parameterization of molecular-based equations of state”, Fluid Phase Equilib, vol. 228–229, pp. 561–575, 2005, doi: https://doi.org/10.1016/j.fluid.2004.08.043.
[37] N. Lindeloff, K. S. Pedersen, H. P. Ronningsen, and J. Milter, “The Corresponding States Viscosity Model Applied to Heavy Oil Systems”, J. Can. Pet. Tech., vol. 43, pp. 47–53, 2004.
[38] A. S. Teja and P. Rice, “Generalized Corresponding State Method for the Viscosities of Liquid Mixtures”, Ind. Eng. Chem. Fundamen., vol. 20, pp. 77–81, 1981.
[39] A. J. Queimada, L. I. Rolo, A. I. Caco, I. M. Marrucho, E. H. Stenby, and J. A. P. Coutinho, “Prediction of Viscosities and Surface Tensions of Fuels Using a New Corresponding States Model”, Fuel, vol. 85, pp. 874–877, 2006.
[40] H. M. Moharam and M. A. Fahim, “Prediction of Viscosity of Heavy Petroleum Fractions and Crude Oils Using a Corresponding States Method”, Ind. Eng. Chem. Res., vol. 34, pp. 4140–4144, 1995.
[41] M. Singh, K. Leonhard, and K. Lucas, “Making equation of state models predictive: Part 1: Quantum chemical computation of molecular properties”, Fluid Phase Equilib, vol. 258, no. 1, pp. 16–28, 2007, doi: https://doi.org/10.1016/j.fluid.2007.05.021.
[42] K. Leonhard, N. Van Nhu, and K. Lucas, “Making Equation of State Models Predictive−Part 3: Improved Treatment of Multipolar Interactions in a PC-SAFT Based Equation of State”, The Journal of Physical Chemistry C, vol. 111, no. 43, pp. 15533–15543, Nov. 2007, doi: 10.1021/jp0726081.
[43] K. Leonhard, N. Van Nhu, and K. Lucas, “Making equation of state models predictive: Part 2: An improved PCP-SAFT equation of state”, Fluid Phase Equilib, vol. 258, no. 1, pp. 41–50, 2007, doi: https://doi.org/10.1016/j.fluid.2007.05.019.
[44] J. P. Wolbach and S. I. Sandler, “Using Molecular Orbital Calculations To Describe the Phase Behavior of Hydrogen-Bonding Fluids”, Ind Eng Chem Res, vol. 36, no. 10, pp. 4041–4051, Oct. 1997, doi: 10.1021/ie9607255.
[45] J. P. Wolbach and S. I. Sandler, “Using Molecular Orbital Calculations To Describe the Phase Behavior of Cross-associating Mixtures”, Ind Eng Chem Res, vol. 37, no. 8, pp. 2917–2928, Aug. 1998, doi: 10.1021/ie970781l.
[46] T. Holderbaum and J. Gmehling, “PSRK: A Group Contribution Equation of State Based on UNIFAC”, Fluid Phase Equilib, vol. 70, no. 2, pp. 251–265, 1991, doi: https://doi.org/10.1016/0378-3812(91)85038-V.
[47] J.-N. Jaubert and F. Mutelet, “VLE predictions with the Peng–Robinson equation of state and temperature dependent kij calculated through a group contribution method”, Fluid Phase Equilib, vol. 224, no. 2, pp. 285–304, 2004, doi: https://doi.org/10.1016/j.fluid.2004.06.059.
[48] O. Ferreira, E. A. Macedo, and E. A. Brignole, “Application of the GCA-EoS model to the supercritical processing of fatty oil derivatives”, J Food Eng, vol. 70, no. 4, pp. 579–587, 2005, doi: https://doi.org/10.1016/j.jfoodeng.2004.10.012.
[49] E. Stefanis, L. Constantinou, I. Tsivintzelis, and C. Panayiotou, “New Group-Contribution Method for Predicting Temperature-Dependent Properties of Pure Organic Compounds”, Int J Thermophys, vol. 26, no. 5, pp. 1369–1388, 2005, doi: 10.1007/s10765-005-8092-7.
[50] S. Skjold-Joergensen, “Group contribution equation of state (GC-EOS): a predictive method for phase equilibrium computations over wide ranges of temperature and pressures up to 30 MPa”, Ind Eng Chem Res, vol. 27, no. 1, pp. 110–118, Jan. 1988, doi: 10.1021/ie00073a021.
[51] D. Nguyen-Huynh, J.-C. de Hemptinne, R. Lugo, J.-P. Passarello, and P. Tobaly, “Modeling Liquid–Liquid and Liquid–Vapor Equilibria of Binary Systems Containing Water with an Alkane, an Aromatic Hydrocarbon, an Alcohol or a Gas (Methane, Ethane, CO2 or H2S), Using Group Contribution Polar Perturbed-Chain Statistical Associating Fluid Theory”, Ind Eng Chem Res, vol. 50, no. 12, pp. 7467–7483, Jun. 2011, doi: 10.1021/ie102045g.
[52] M. S. Tamouza and J. P. Petitet, “Utilisation Prédictive de l’Equation d’Etat SAFT”, 2004.
[53] T.-B. Nguyen, J.-C. de Hemptinne, B. Creton, and G. M. Kontogeorgis, “GC-PPC-SAFT Equation of State for VLE and LLE of Hydrocarbons and Oxygenated Compounds. Sensitivity Analysis”, Ind Eng Chem Res, vol. 52, no. 21, pp. 7014–7029, May 2013, doi: 10.1021/ie3028069.
[54] A. Lymperiadis, C. S. Adjiman, A. Galindo, and G. Jackson, “A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-γ)”, J Chem Phys, vol. 127, no. 23, p. 234903, Dec. 2007, doi: 10.1063/1.2813894.
[55] A. Lymperiadis, C. S. Adjiman, G. Jackson, and A. Galindo, “A generalisation of the SAFT-γ group contribution method for groups comprising multiple spherical segments”, Fluid Phase Equilib, vol. 274, no. 1, pp. 85–104, 2008, doi: https://doi.org/10.1016/j.fluid.2008.08.005.
[56] A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, and A. N. Burgess, “Statistical associating fluid theory for chain molecules with attractive potentials of variable range”, J Chem Phys, vol. 106, no. 10, pp. 4168–4186, Mar. 1997, doi: 10.1063/1.473101.
[57] L. F. Cardona, L. A. Forero, and J. A. Velásquez, “Extension of a Group Contribution Method to Predict Viscosity Based on Momentum Transport Theory Using a Modified Peng–Robinson EoS”, Ind Eng Chem Res, vol. 60, no. 41, pp. 14903–14926, Oct. 2021, doi: 10.1021/acs.iecr.1c02146.
[58] J. D. Jovanović, N. D. Grozdanić, I. R. Radović, and M. Lj. Kijevčanin, “A new group contribution model for prediction liquid hydrocarbon viscosity based on free-volume theory”, J Mol Liq, vol. 376, p. 121452, 2023, doi: https://doi.org/10.1016/j.molliq.2023.121452.
[59] S. A. Khan, G. A. Pope, and K. Sepehrnoori, “Fluid Characterization of Three-Phase CO2/Oil Mixtures”, in All Days, SPE, Apr. 1992. doi: 10.2118/24130-MS.
[60] M. R. Riazi and Y. A. Roomi, “Potential Approaches Toward Characterization and Property Estimation of Heavy Petroleum Fluids and Natural Gas Systems”, Pet Sci Technol, vol. 26, no. 18, pp. 2159–2169, Dec. 2008, doi: 10.1080/10916460701429548.
[61] T. E. Daubert, “Petroleum fraction distillation interconversions”, Hydrocarbon Processing; (United States), vol. 73, no. 9, 1994, [Online]. Available: https://www.osti.gov/biblio/6781634
[62] M. R. Riazi and T. E. Daubert, “Analytical distillation-curve types correlations interconvert”, Oil & Gas Journal, 1986, [Online]. Available: https://api.semanticscholar.org/CorpusID:93136293
[63] W. C. Edmister and K. K. Okamoto, “Applied Hydrocarbon Thermodynamics - Part 12: Equilibrium Flash Vaporization Correlation for Petroleum Fractions”, Petroleum Refiner, vol. 38, no. 8, pp. 117–132, 1959.
[64] E. J. Hoffman, “Relations between true boiling point and ASTM distillation curves”, Chem Eng Sci, vol. 24, no. 1, pp. 113–117, 1969, doi: https://doi.org/10.1016/0009-2509(69)80013-8.
[65] J.-C. de Hemptinne, J.-M. Ledanois, P. Mougin, and A. Barreau, Select Thermodynamic Models for Process Simulation - A Practical Guide using a Three Steps Methodology. Technip, 2012. doi: 10.2516/ifpen/2011001.
[66] K. M. Watson and E. F. Nelson, “Improved Methods for Approximating Critical and Thermal Properties of Petroleum Fractions”, Ind Eng Chem, vol. 25, no. 8, pp. 880–887, Aug. 1933, doi: 10.1021/ie50284a012.
[67] C. H. Twu, “An internally consistent correlation for predicting the critical properties and molecular weights of petroleum and coal-tar liquids”, Fluid Phase Equilib, vol. 16, no. 2, pp. 137–150, 1984, doi: https://doi.org/10.1016/0378-3812(84)85027-X.
[68] E. Eckert and T. Vaněk, “New approach to the characterisation of petroleum mixtures used in the modelling of separation processes”, Comput Chem Eng, vol. 30, no. 2, pp. 343–356, 2005, doi: https://doi.org/10.1016/j.compchemeng.2005.10.005.
[69] J. G. Speight, The Chemistry and Technology of Petroleum. CRC Press, 2006. doi: 10.1201/9781420008388.
[70] J. A. Murray, “Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography”, J Chromatogr A, vol. 1261, pp. 58–68, 2012, doi: https://doi.org/10.1016/j.chroma.2012.05.012.
[71] B. Omais, J. Crepier, N. Charon, M. Courtiade, A. Quignard, and D. Thiébaut, “Oxygen speciation in upgraded fast pyrolysis bio-oils by comprehensive two-dimensional gas chromatography”, Analyst, vol. 138, no. 8, pp. 2258–2268, 2013, doi: 10.1039/C2AN35597C.
[72] M. Adahchour, J. Beens, and U. A. Th. Brinkman, “Recent developments in the application of comprehensive two-dimensional gas chromatography”, J Chromatogr A, vol. 1186, no. 1, pp. 67–108, 2008, doi: https://doi.org/10.1016/j.chroma.2008.01.002.
[73] W. Bertsch, “Two-Dimensional Gas Chromatography. Concepts, Instrumentation, and Applications – Part 1: Fundamentals, Conventional Two-Dimensional Gas Chromatography, Selected Applications”, Journal of High Resolution Chromatography, vol. 22, no. 12, pp. 647–665, Dec. 1999, doi: https://doi.org/10.1002/(SICI)1521-4168(19991201)22:12<647::AID-JHRC647>3.0.CO;2-V.
[74] F. Montel and P. L. Gouel, “A New Lumping Scheme of Analytical Data for Compositional Studies”, in SPE Annual Technical Conference and Exhibition, SPE, Sep. 1984. doi: 10.2118/13119-MS.
[75] C. F. Leibovici, “A consistent procedure for the estimation of properties associated to lumped systems”, Fluid Phase Equilib, vol. 87, no. 2, pp. 189–197, 1993, doi: https://doi.org/10.1016/0378-3812(93)85026-I.
[76] D. Mohan, C. U. Jr. Pittman, and P. H. Steele, “Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review”, Energy & Fuels, vol. 20, no. 3, pp. 848–889, May 2006, doi: 10.1021/ef0502397.
[77] K. Sipilä, E. Kuoppala, L. Fagernäs, and A. Oasmaa, “Characterization of biomass-based flash pyrolysis oils”, Biomass Bioenergy, vol. 14, no. 2, pp. 103–113, 1998, doi: https://doi.org/10.1016/S0961-9534(97)10024-1.
[78] R. Maggi and B. Delmon, “Characterization and upgrading of bio-oils produced by rapid thermal processing”, Biomass Bioenergy, vol. 7, no. 1, pp. 245–249, 1994, doi: https://doi.org/10.1016/0961-9534(94)00062-X.
[79] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, and C. Roy, “Characterization of bio-oils in chemical families”, Biomass Bioenergy, vol. 31, no. 4, pp. 222–242, 2007, doi: https://doi.org/10.1016/j.biombioe.2006.02.006.
[80] C. Amen-Chen, H. Pakdel, and C. Roy, “Separation of phenols from Eucalyptus wood tar”, Biomass Bioenergy, vol. 13, no. 1, pp. 25–37, 1997, doi: https://doi.org/10.1016/S0961-9534(97)00021-4.
[81] M. E. da Cunha et al., “Analysis of fractions and bio-oil of sugar cane straw by one-dimensional and two-dimensional gas chromatography with quadrupole mass spectrometry (GC×GC/qMS)”, Microchemical Journal, vol. 110, pp. 113–119, 2013, doi: https://doi.org/10.1016/j.microc.2013.03.004.
[82] V. Szewczyk and J. Dellacherie, “Modélisation thermodynamique compositionnelle de la floculation des bruts asphalténiques”, 1997.
[83] L. Avaullee, L. Trassy, E. Neau, and J. N. Jaubert, “Thermodynamic modeling for petroleum fluids I. Equation of state and group contribution for the estimation of thermodynamic parameters of heavy hydrocarbons”, Fluid Phase Equilib, vol. 139, no. 1, pp. 155–170, 1997, doi: https://doi.org/10.1016/S0378-3812(97)00168-4.
[84] Y. Zhang, “A Molecular Approach for Characterization and Property Predictions of Petroleum Mixtures with Applications to Refinery Modelling”, UMIST, Manchester,UK, 1999.
[85] J. Gomez-Prado, N. Zhang, and C. Theodoropoulos, “Characterisation of heavy petroleum fractions using modified molecular-type homologous series (MTHS) representation”, Energy, vol. 33, no. 6, pp. 974–987, 2008, doi: https://doi.org/10.1016/j.energy.2007.11.006.
[86] M. Mi Saine Aye and N. Zhang, “A novel methodology in transforming bulk properties of refining streams into molecular information”, Chem Eng Sci, vol. 60, no. 23, pp. 6702–6717, 2005, doi: https://doi.org/10.1016/j.ces.2005.05.033.
[87] A. Fafet and J. Magne-Drisch, “Analyse quantitative détaillée des distillats moyens par couplage CG/SM. Application à l’étude des schémas réactionnels du procédé d’hydrotraitement”, Rev. Inst. Fr. Pét., vol. 50, no. 3, pp. 391–404, May 1995, [Online]. Available: https://doi.org/10.2516/ogst:1995026
[88] D. Hudebine and J. J. Verstraete, “Molecular reconstruction of LCO gasoils from overall petroleum analyses”, Chem Eng Sci, vol. 59, no. 22, pp. 4755–4763, 2004, doi: https://doi.org/10.1016/j.ces.2004.09.019.
[89] D. Hudebine and J. J. Verstraete, “Reconstruction of Petroleum Feedstocks by Entropy Maximization. Application to FCC Gasolines”, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, vol. 66, no. 3, pp. 437–460, May 2011, [Online]. Available: https://doi.org/10.2516/ogst/2011110
[90] J. J. Verstraete, Ph. Schnongs, H. Dulot, and D. Hudebine, “Molecular reconstruction of heavy petroleum residue fractions”, Chem Eng Sci, vol. 65, no. 1, pp. 304–312, 2010, doi: https://doi.org/10.1016/j.ces.2009.08.033.
[91] L. Pereira de Oliveira, J. J. Verstraete, and M. Kolb, “A Monte Carlo modeling methodology for the simulation of hydrotreating processes”, Chemical Engineering Journal, vol. 207–208, pp. 94–102, 2012, doi: https://doi.org/10.1016/j.cej.2012.05.039.
[92] L. P. de Oliveira, A. T. Vazquez, J. J. Verstraete, and M. Kolb, “Molecular Reconstruction of Petroleum Fractions: Application to Vacuum Residues from Different Origins”, Energy & Fuels, vol. 27, no. 7, pp. 3622–3641, Jul. 2013, doi: 10.1021/ef300768u.
[93] N. Charon-Revellin, H. Dulot, C. López-García, and J. Jose, “Kinetic Modeling of Vacuum Gas Oil Hydrotreatment using a Molecular Reconstruction Approach”, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, vol. 66, no. 3, pp. 479–490, May 2011, [Online]. Available: https://doi.org/10.2516/ogst/2010005
[94] T.-B. Nguyen, J.-C. de Hemptinne, B. Creton, and G. M. Kontogeorgis, “Characterization Scheme for Property Prediction of Fluid Fractions Originating from Biomass”, Energy & Fuels, vol. 29, no. 11, pp. 7230–7241, Nov. 2015, doi: 10.1021/acs.energyfuels.5b00782.