Tổng hợp và xác định cấu trúc của một số dẫn xuất 1,5-disubstituted-4-ethoxycarbonyl-3-hydroxy-3-pyrroline-2-one chứa nhóm nitro
##plugins.themes.academic_pro.article.main##
Author
-
Nguyen Tran NguyenThe University of Danang - University of Science and Education, Danang, VietnamVo Viet DaiThe University of Danang - University of Science and Education, Danang, Vietnam
Từ khóa:
Tóm tắt
2-Pyrrolidinone là một dị vòng γ-lactam chứa bốn nguyên tử carbon và một nguyên tử nitrogen. Trong nhóm các dẫn xuất 2-pyrrolidinone, 1,5-dihydro-2H-pyrrol-2-one, còn được gọi là các dẫn xuất 3-pyrroline-2-one là những đơn vị cấu trúc quan trọng trong nhiều hợp chất thiên nhiên có hoạt tính sinh học. Hơn nữa, dị vòng γ-lactam này còn có mặt trong cấu trúc của một số loại dược phẩm. Trong nghiên cứu này, ba dẫn xuất của 4-ethoxycarbonyl-3-hydroxy-3-pyrroline-2-one chứa nhóm nitro (–NO2) đã được tổng hợp dựa vào phản ứng nhiều thành phần (MCR) từ aldehyde thơm, 4-nitroaniline và sodium diethyl oxalacetate trong dung môi ethanol. Ngoài ra, cấu trúc của các sản phẩm đã được chứng minh dựa vào các phương pháp phổ hiện đại như phổ cộng hưởng từ hạt nhân (1H NMR, 13C NMR) và phổ khối phân giải cao (ESI – HRMS)
Tài liệu tham khảo
-
[1] Harreus, R. Backes, J. Eichloer, R. Feuerhake, C. Jakel, U. Mahn, R. Pinkos, and R. Vogelsang, 2-Pyrrolidone, 6th edition. NJ: Wiley‐VCH Verlag GmbH & Co., 2011.
[2] Caruano, G. Muccioli, and R. Robiette, “Biologically active γ-lactams: synthesis and natural sources”, Organic and biomolecular chemistry, vol. 14, no. 43, pp. 10134-10156, 2016. https://doi.org/10.1039/C6OB01349J
[3] Li Petri, M. V. Raimondi, V. Spanò, R. Holl, P. Barraja, and A. Montalbano, “Pyrrolidine in drug discovery: a versatile scaffold for novel biologically active compounds”, Topics in Current Chemistry, vol. 379, no. 34, pp. 1-46, 2021. https://doi.org/10.1007/s41061-021-00347-5
[4] Asami, H. Kakeya, R. Onose, A. Yoshida, H. Matsuzaki, and H. Osada, “Azaspirene: A Novel Angiogenesis Inhibitor Containing a 1-Oxa-7-azaspiro[4.4]non-2-ene-4,6-dione Skeleton Produced by the Fungus Neosartorya sp.”, Organic letters, vol. 4, no. 17, pp. 2845-2848, 2002. https://doi.org/10.1021/ol020104
[5] G. Waterman and D. F. Faulkner, “Imidazole alkaloids from Cynometra hankei”, Phytochemistry, vol. 20, no.12, pp. 2765-2767, 1981. https://doi.org/10.1016/0031-9422(81)85283-1
[6] W. Fishwick, R. J. Foster, and R. E. Carr, “A short dipolar cycloaddition approach to γ-lactam alkaloids from cynometra hankei”, Tetrahedron letters, vol. 37, no.22, pp. 3915-3918, 1996. https://doi.org/10.1016/0040-4039(96)00688-0
[7] Singh, V. Dimitriou, R. Mahajan, and A. Crossley, “Double-blind comparison between doxapram and pethidine in the treatment of postanaesthetic shivering”, BJA: British Journal of Anaesthesia, vol. 71, no. 5, pp. 685-688, 1993. https://doi.org/10.1093/bja/71.5.685
[8] He, H. Y. Yang, R. Bigelis, E. H. Solum, M. Greenstein, and G. T. Carter, “Pyrrocidines A and B, new antibiotics produced by a filamentous fungus”, Tetrahedron Letters, vol. 43, no. 9, pp. 1633-1636, 2002. https://doi.org/10.1016/S0040-4039(02)00099-0
[9] Osterhage, R. Kaminsky, G. M. König, and A. D. Wright, “Ascosalipyrrolidinone A, an Antimicrobial Alkaloid, from the Obligate Marine Fungus Ascochyta salicorniae”, The Journal of Organic Chemistry, vol. 65, no.20, pp. 6412-6417, 2000. https://doi.org/10.1021/jo000307g
[10] T. Nguyen, V. V. Dai, A. Mechler, N. T. Hoa, and Q. V. Vo, “Synthesis and evaluation of the antioxidant activity of 3-pyrroline-2-ones: experimental and theoretical insights”, RSC advances, vol. 12, 2022. DOI: 10.1039/d2ra04640g
[11] Whitt, S. M. Shipley, D. J. Newman, and K. M. Zuck, “Tetramic Acid Analogues Produced by Coculture of Saccharopolyspora erythraea with Fusarium pallidoroseum”, Journal of natural products, vol. 77, no. 1, 2014, pp. 173-177. https://doi.org/10.1021/np400761g
[12] Zykova et al., “Predictive and experimental determination of antioxidant activity in the series of substituted 4-(2,2-dimethylpropanoyl)-3-hydroxy-1,5-diphenyl-1,5-dihydro-2H-pyrrol-2-ones”, Journal of Pharmaceutical Sciences and Research, vol. 10, no. 1, pp. 164-166, 2018.
[13] Q. Cusumano and J. G. Pierce, “3-Hydroxy-1,5-dihydro-2H-pyrrol-2-ones as novel antibacterial scaffolds against methicillin-resistant Staphylococcus aureus”, Bioorganic & medicinal chemistry letters, vol. 28, no. 16, pp. 2732-2735, 2018. https://doi.org/10.1016/j.bmcl.2018.02.047
[14] López-Pérez et al., “Discovery of Pyrrolidine-2,3-diones as Novel Inhibitors of P. aeruginosa PBP3”, Antibiotics, vol. 10, no. 5, pp. 529, 2021. https://doi.org/10.3390/antibiotics10050529
[15] Del Corte et al., “A Multicomponent Protocol for the Synthesis of Highly Functionalized γ-Lactam Derivatives and Their Applications as Antiproliferative Agents”, Pharmaceuticals, vol. 14, no. 8, pp. 782, 2021. https://doi.org/10.3390/ph14080782
[16] Surmiak et al., “A Unique Mdm2-Binding Mode of the 3-Pyrrolin-2-one- and 2-Furanone-Based Antagonists of the p53-Mdm2 Interaction”, ACS chemical biology, vol. 11, no. 12, pp. 3310-3318, 2016. https://doi.org/10.1021/acschembio.6b00596
[17] Joksimović et al., “Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study”, Bioorganic Chemistry, vol. 88, pp. 102954, 2019. https://doi.org/10.1016/j.bioorg.2019.102954
[18] Ma, P. Wang, W. Fu, X. Wan, L. Zhou, Y. Chu, and D. Ye, “Rational design of 2-pyrrolinones as inhibitors of HIV-1 integrase”, Bioorganic & medicinal chemistry letters, vol. 21, no. 22, pp. 6724-6727, 2011. https://doi.org/10.1016/j.bmcl.2011.09.054
[19] V. Ortiz Zacarías et al., “Pyrrolone Derivatives as Intracellular Allosteric Modulators for Chemokine Receptors: Selective and Dual-Targeting Inhibitors of CC Chemokine Receptors 1 and 2”, Journal of Medicinal Chemistry, vol. 61, no. 20, pp. 9146-9161, 2018. https://doi.org/10.1021/acs.jmedchem.8b00605
[20] M. de Marigorta, J. M. de los Santos, A. M. O. de Retana, J. Vicario, and F. Palacios, “Multicomponent Reactions in the Synthesis of γ-Lactams”, Synthesis, vol. 50, no. 23, pp. 4539-4554, 2018. DOI:10.1055/s-0037-1611014
[21] L. Ameta and A. Dandia, Multicomponent reactions: Synthesis of bioactive heterocycles, CRC Press, 2017
[22] Ghorbani‐Vaghei, N. Sarmast, and J. Mahmoodi, “One-pot synthesis of polysubstituted pyrrolidinones using novel magnetic nanoparticles as an efficient and reusable catalyst”, Applied Organometallic Chemistry, vol. 31, no. 8, pp. e3681, 2017. https://doi.org/10.1002/aoc.3681
[23] Esmaeilzadeh and D. Setamdideh, “Synthesis and characterization of Fe3O4/PEG-400/oxalic acid magnetic nanoparticles as a heterogeneous catalyst for the synthesis of pyrrolin-2-ones derivatives”, Journal of the Serbian Chemical Society, vol. 86, no. 11, pp. 1039-1052, 2021. https://doi.org/10.2298/JSC210521059E
[24] Saha, S. Payra, and S. Banerjee, “In-water facile synthesis of poly-substituted 6-arylamino pyridines and 2-pyrrolidone derivatives using tetragonal nano-ZrO2 as reusable catalyst”, RSC advances, vol. 6, pp. 101953-101959, 2016. https://doi.org/10.1039/C6RA24367C
[25] Dutta, M. A. Rohman, R. Nongrum, A. Thongni, S. Mitra, and R. Nongkhlaw, “Visible light-promoted synthesis of pyrrolidinone derivatives via Rose Bengal as a photoredox catalyst and their photophysical studies”, New Journal of Chemistry, vol. 45, no. 18, pp. 8136-8148, 2021. https://doi.org/10.1039/D1NJ00343G
[26] Manta et al., “A novel and easy two-step, microwave-assisted method for the synthesis of halophenyl pyrrolo[2,3-b]quinoxalines via their pyrrolo precursors. Evaluation of their bioactivity”, Tetrahedron Letters, vol. 55, no. 11, pp. 1873-1876, 2014. https://doi.org/10.1016/j.tetlet.2014.01.106
[27] T. Nguyen, V. V. Dai, N. N. Tri, L. Van Meervelt, N. T. Trung, and W. Dehaen, “Experimental and theoretical studies on the synthesis of 1,4,5-trisubstituted pyrrolidine-2,3-diones”, Beilstein Journal of Organic Chemistry, vol. 18, pp. 1140-1153, 2022. https://doi.org/10.3762/bjoc.18.118
[28] K. Chakraborti, S. Bhagat, and S. Rudrawar, “Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones”, Tetrahedron letters, vol. 45, no. 41, pp. 7641-7644, 2004. https://doi.org/10.1016/j.tetlet.2004.08.097
[29] Mostafa, S. M. Habibi‐Khorassani, and M. Shahraki, “An experimental investigation of substituent effects on the formation of 2,3-dihydroquinazolin-4(1H)-ones: a kinetic study”, Journal of Physical Organic Chemistry, vol. 30, no. 3, pp. e3616, 2017. https://doi.org/10.1002/poc.3616
[30] Ahankar, A. Ramazani, K. Ślepokura, T. Lis, and S. W. Joo, “Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation”, Green Chemistry, vol.18, pp. 3582-3593, 2016. DOI: 10.1039/C6GC00157B
[31] Z. Hosseinzadeh, A. Ramazani, H. Ahankar, K. Ślepokura, and T. Lis, “Sulfonic Acid-Functionalized Silica-Coated Magnetic Nanoparticles as a Reusable Catalyst for the Preparation of Pyrrolidinone Derivatives Under Eco-Friendly Conditions”, Silicon, vol. 11, pp. 2933-2943, 2019. https://doi.org/10.1007/s12633-019-0087-2