Nghiên cứu quá trình tautomer hoá enol – enol của 5-(4-chlorophenyl)-1-phenyl-4-acetyl-3-hydroxy -3- pyrrolin-2-one dựa vào phổ cộng hưởng từ hạt nhân được đo trong dung môi DMSO-d6
Tóm tắt: 163
|
PDF: 266
##plugins.themes.academic_pro.article.main##
Author
-
Nguyen Tran NguyenThe University of Danang - University of Science and Education, Vietnam
Từ khóa:
Tóm tắt
Tautomer hoá là một hiện tượng hoá học đặc biệt liên quan đến sự chuyển dịch của một nguyên tử hydrogen giữa các dạng tautomer khác nhau. Ngoài ra, quá trình cân bằng động học này cũng đóng vai trò rất quan trọng trong nghiên cứu hoá dược hiện đại do sự có mặt của nó trong cơ chế hoạt động của nhiều loại thuốc. Trong nghiên cứu này, quá trình tautomer hoá enol – enol của hợp chất 5-(4-chlorophenyl)-1-phenyl-4-acetyl-3-hydroxy-3-pyrrolin-2-one trong dung môi dimethyl sulfoxide đã được nghiên cứu dựa vào phổ cộng hưởng từ hạt nhân. Kết quả ghi phổ đã cho thấy cân bằng hoá học giữa hai cấu trúc tautomer dạng enol đã xảy ra nhanh hơn so với khả năng ghi nhận các tần số cộng hưởng riêng lẻ ở mỗi tautomer của thiết bị đo và dẫn đến xuất hiện một số peak chân rộng trong phổ 13C NMR. Đặc biệt, tương tác spin – spin giữa các nguyên tử hydrogen và carbon trong hợp chất đã được ghi nhận và phân tích thông qua các phổ hai chiều HSQC và HMBC.
Tài liệu tham khảo
-
[1] Lauro et al., “Discovery of 3-hydroxy-3-pyrrolin-2-one-based mPGES-1 inhibitors using a multi-step virtual screening protocol”, MedChemComm, vol. 9, no. 12, pp. 2028-2036, 2018. https://doi.org/10.1039/C8MD00497H
[2] Del Corte et al., “A multicomponent protocol for the synthesis of highly functionalized γ-lactam derivatives and their applications as antiproliferative agents”, Pharmaceuticals, vol. 14, no. 8, pp. 782, 2021.
[3] Q. Cusumano and J. G. Pierce, “3-Hydroxy-1,5-dihydro-2H-pyrrol-2-ones as novel antibacterial scaffolds against methicillin-resistant Staphylococcus aureus”, Bioorganic & medicinal chemistry letters, vol.28, no. 16, pp. 2732-2735, 2018. https://doi.org/10.1016/j.bmcl.2018.02.047
[4] López-Pérez et al., “Discovery of pyrrolidine-2,3-diones as novel inhibitors of P. aeruginosa PBP3”, Antibiotics, vol. 10, no. 5, pp. 529, 2021. https://doi.org/10.3390/antibiotics10050529
[5] V. O. Zacarías et al., “Pyrrolone derivatives as intracellular allosteric modulators for chemokine receptors: selective and dual- targeting inhibitors of CC chemokine receptors 1 and 2”, Journal of Medicinal Chemistry, vol. 61, no. 20, pp. 9146-9161, 2018. https://doi.org/10.1021/acs.jmedchem.8b00605
[6] T. Nguyen, V. V. Dai, A. Mechler, N. T. Hoa, and Q. V. Vo, “Synthesis and evaluation of the antioxidant activity of 3-pyrroline-2-ones: experimental and theoretical insights”, RSC advances, vol. 12, no. 38, pp. 24579-24588, 2022. DOI: 10.1039/D2RA04640G
[7] R. West et al., “ZG-1494α, a novel platelet-activating factor acetyltransferase inhibitor from Penicilium rubrum, isolation, structure elucidation, and biological activity”, The Journal of Antibiotics, vol. 49, no. 10, pp. 967-973, 1996. https://doi.org/10.7164/antibiotics.49.967
[8] T. Nguyen, V. V. Dai, N. N. Tri, L. Van Meervelt, N. T. Trung, and W. Dehaen, “Experimental and theoretical studies on the synthesis of 1,4,5-trisubstituted pyrrolidine-2,3-diones”, Beilstein journal of organic chemistry, vol. 18, no. 1, pp. 1140-1153, 2022. https://doi.org/10.3762/bjoc.18.118
[9] Gein, M. Armisheva, N. Rassudikhina, M. Vakhrin, and E. Voronina, “Synthesis and antimicrobial activity of 1-(4-hydroxyphenyl)-4-acyl-5-aryl-3-hydroxy-3-pyrrolin-2-ones”, Pharmaceutical Chemistry Journal, vol. 45, no. 3, pp. 162-164, 2011. https://doi.org/10.1007/s11094-011-0584-0
[10] Gein, O. Bobrovskaya, R. Valiev, and V. Novikova, “Synthesis and antimicrobial activity of 5-[2-(4-aminosulfonylphenyl)ethyl]-3,4-diaryl-4,6-dihydropyrrolo [3,4-c]pyrazol-6-ones”, Russian Journal of General Chemistry, vol. 86, pp. 1964-1966, 2016. https://doi.org/10.1134/S1070363216080326
[11] Muller, “Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994)”, Pure and Applied Chemistry, vol. 66, no. 5, pp. 1077-1184, 1994. https://doi.org/10.1351/pac199466051077
[12] Zhang, A. T. Gardini, X. Xu, and M. Parrinello, “Intramolecular and water mediated tautomerism of solvated glycine”, Journal of Chemical Information and Modeling, vol. 64, no. 9, pp. 3599-3604, 2024. https://doi.org/10.1021/acs.jcim.4c00273
[13] Su, Z. Sun, W. Su, and X. Liang, “NMR investigation and theoretical calculations on the tautomerism of benzimidazole compounds”, Journal of Molecular Structure, vol. 1173, no. 5, pp. 690-696, 2018. https://doi.org/10.1016/j.molstruc.2018.07.038
[14] A. Freitag, T. L. Pruden, D. R. Moody, J. T. Parker, and M. Fallet, “On the Keto-Enol Tautomerization of Malonaldehyde: An Effective Fragment Potential Study”, The Journal of Physical Chemistry A, vol. 111, no. 9, pp. 1659-1666, 2007. https://doi.org/10.1021/jp065979a
[15] Lammertsma and P. V. Bharatam, “Keto ⇌ Enol, Imine ⇌ Enamine, and Nitro ⇌aci-Nitro tautomerism and their interrelationship in substituted nitroethylenes. Keto, imine, nitro, and vinyl substituent effects and the importance of H-bonding”, The Journal of organic chemistry, vol. 65, no. 15, pp. 4662-4670. https://doi.org/10.1021/jo000283d
[16] V. Bharatam, O. R. Valanju, A. A. Wani, and D. K. Dhaked, “Importance of tautomerism in drugs”, Drug Discovery Today, vol. 28, no. 4, pp. 103494, 2023. https://doi.org/10.1016/j.drudis.2023.103494
[17] Tian, P. Xiu, Y. Meng, W. Zhao, Z. Wang, and R. Zhou, “Enantiomerization mechanism of thalidomide and the role of water and hydroxide ions”, Chemistry–A European Journal, vol. 18, no. 45, pp. 14305-14313, 2012. https://doi.org/10.1002/chem.201202651
[18] Reeves, “Nuclear magnetic resonance measurements in solutions of acetylacetone: the effect of solvent interactions on the tautomeric equilibrium”, Canadian Journal of Chemistry, vol. 35, no. 11, pp. 1351-1365, 1957. https://doi.org/10.1139/v57-179
[19] Koltsov, “Enol-enol tautomerism in cis-keto-enols”, Journal of molecular structure, vol. 444, no. 1-3, pp. 1-11, 1998. https://doi.org/10.1016/S0022-2860(97)00261-5
[20] A. Ebraheem, “1H, 13C and 19F NMR studies on the structure of the intramolecularly hydrogen bonded cis-enols of 2-trifluoroacetylcycloalkanones”, Monatshefte für Chemie/Chemical Monthly, vol. 122, no. 3, pp. 157-163, 1991.
[21] T. Nguyen and V. V. Dai, “Synthesis and structural determination of pyrrolidine-2,3-dione derivatives from 4-acetyl-3-hydroxy-5-phenyl-1-(3-nitrophenyl)-3-pyrroline-2-one”, The University of Danang - Journal of Science and Technology, vol. 21, no. 6.1, pp. 61-66, 2023. https://doi.org/10.31130/ud-jst.2023.519E
[22] Hosseinzadeh, A. Ramazani, H. Ahankar, K. Ślepokura, and T. Lis, “Sulfonic acid-functionalized silica-coated magnetic nanoparticles as a reusable catalyst for the preparation of pyrrolidinone derivatives under eco-friendly conditions”, Silicon, vol. 11, pp. 2933-2943, 2019. https://doi.org/10.1007/s12633-019-0087-2
[23] G. Wade, Organic chemistry, 8th edition, USA: Pearson Education, 2008.
[24] Clayden, N. Greeves, and S. Warren, Organic chemistry, USA: Oxford University Press, 2012.
[25] T. Huggins, T. Kesharwani, J. Buttrick, and C. Nicholson, “Variable temperature NMR experiment studying restricted bond rotation”, Journal of Chemical Education, vol. 97, no. 5, pp. 1425-1429, 2020. https://doi.org/10.1021/acs.jchemed.0c00057
[26] Atta-Ur-Rahman, Nuclear magnetic resonance: basic principles, USA: Springer Science & Business Media, 2012.
[27] V. Talsi and S. Evdokimov, “New cases of prototropic tautomerism in substituted pyridines”, Journal of Chemical Engineering And Bioanalytical Chemistry, vol. 1, pp. 38-48, 2017.

