Advance ignition angle adjustment for engine fueled with biogas-syngas-hydrogen in hybrid renewable energy system




##plugins.themes.academic_pro.article.main##
Author
-
Bui Van GaThe University of Danang - University of Science and TechnologyBui Thi Minh TuThe University of Danang - University of Science and TechnologyLe Minh TienThe University of Danang - University of Science and TechnologyBui Van HungThe University of Danang - University of Technology and EducationNguyen Le Chau ThanhThe University of Danang - University of Technology and Education
Keywords:
Abstract
Pressure, combustion temperature and NOx emission escalate with the increase in advance ignition angle. The indicative engine cycle work reaches the maximum value corresponding to the optimal advance igntion angle which depends on the fuel compositions. With a given biogas-hydrogen fuel mixture, the average optimal advance ignition angle increased by 2°TK when the syngas content in the mixture grown by 20%. For a given biogas-syngas mixture, the optimal advance ignition angle decreases linearly with increasing hydrogen content with a reduction rate of about 0.43 (°TK/%H2). With a given ignition advance angle, NOx decreases with increasing syngas content. The ignition system of the traditional stationary engine can be converted into an electronically controlled ignition system to automatically adjust the advance ignition angle to suit the operating conditions of the engine in the hybrid renewable energy system. The system simply consists of a Hall sensor, an integrated ignition cluster and a microcontroller with a program to adjust the advance ignition angle according to the fuel compositions.
References
-
[1] VNA/VNS, “Việt Nam strives to achieve ‘net zero’ by 2050, with international support: PM”, Việt Nam News, November, 02/2021
[2] https://vietnamnews.vn/environment/1071075/viet-nam-strives-to-achieve-net-zero-by-2050-with-international-support-pm.html
[3] Yousefi H, Ghodusinejad MH, Kasaeian A., “Multi-objective optimal component sizing of a hybrid ICE + PV/T driven CCHP microgrid”, Appl Therm Eng, 2017.
[4] Shaopeng Guo, Qibin Liu, Jie Sun, Hongguang Jin., “A review on the utilization of hybrid renewable energy”, Renewable and Sustainable Energy Reviews, vol 91, 2018, 1121–1147.
[5] Chouaib Ammari, Djamel Belatrache, Batoul Touhami, Salim Makhlouf, “Sizing, optimization, control and energy management of hybrid renewable energy system- a review”, Energy and Built Environment, 2021.
[6] I. Come Zebra, Henny J. van der Windt, Geraldo Nhumaio et al., “A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries”, Renewable and Sustainable Energy Reviews, vol 144, 2021, 111036.
[7] Marek Jaszczur, Qusay Hassan, Patryk Palej, Jasim Abdulateef, “Multi-Objective optimisation of a micro-grid hybrid power system for household application”, Energy, 202, 2020, 117738.
[8] Ifegwu Eziyi, Anjaneyulu Krothapalli, “Sustainable Rural Development: Solar/Biomass Hybrid Renewable Energy System”. Energy Procedia, 57, 2014, 1492-1501.
[9] Ismail MS, Moghavvemi M, Mahlia TMI, Muttaqi KM, Moghavvemi S., 2015. “Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: a review and analysis”, Renewable and Sustainable Energy Reviews, 42, 726–734.
[10] Williams NJ, Jaramillo P, Taneja J, Ustun TS., “Enabling private sector investment in microgrid-based rural electrification in developing countries: A review”, Renewable and Sustainable Energy Reviews, 52, 2015. 1268-1281.
[11] Soumya Mandal, Hosna Yasmin, M. R. I. Sarker, and M. R. A. Beg., “Prospect of solar-PV/biogas/diesel generator hybrid energy system of an off-grid area in Bangladesh”. AIP Conference Proceedings 1919, 2017, 020020.
[12] R. Borges Neto, P.C.M. Carvalho, J.O.B. Carioca, F.J.F. Canafistula, 2010, “Biogas/photovoltaic hybrid power system for decentralized energy supply of rural areas”, Energy Policy, 38, 2010, 4497-4450.
[13] Katharina Bär, Stefanie Wagender, Felix Solka, Abdessamad Saidi, Prof Wilfried Zörner, “Flexibility Potential of Photovoltaic Power Plant and Biogas Plant Hybrid Systems in the Distribution Grid”, Chemical Engineering & Technology, 2020, pp. 1-12.
[14] Tamoor M, M. Suleman Tahir, Muhammad Sagir et al., “Design of 3 kW integrated power generation system from solar and biogas”, International Journal of Hydrogen Energy, vol 45, 2020, 12711-12720.
[15] S. Mohammed, M.W. Mustafa, N. Bashir, “Hybrid renewable energy systems for off-grid electric power: Review of substantial issues”, Renewable and Sustainable Energy Reviews, 35, 2014, 527–539.
[16] Krishna KS, Kumar KS., “A review on hybrid renewable energy systems”, Renewable and Sustainable Energy Reviews, 52, 2015, 907-916.
[17] Trần Văn Nam, Bùi Văn Ga, Phan Minh Đức, Bùi Thị Minh Tú, “Cung cấp nhiên liệu biogas-hydrogen cho động cơ đánh lửa cưỡng bức kéo máy phát điện trong hệ thống năng lượng tái tạo hybrid”, Tuyển tập Công trình Hội nghị khoa học Cơ học Thủy khí toàn quốc lần thứ 21, Quynhon 19-21/7/2018, pp. 448-458
[18] Bui Van Ga, Bui Thi Minh Tu, Nguyen Van Dong, Bui Van Hung, “Analysis of combustion and NOx formation in a SI engine fueled with HHO enriched biogas”, Environmental Engineering and Management Journal, May 2020, Vol. 19, No. 5, 317-327.
[19] Bùi Văn Ga, Trần Thanh Hải Tùng, Lê Minh Tiến, Bùi Thị Minh Tú, Đặng Văn Nghĩa, Tôn Nguyễn Thành Sang, “Tính năng kỹ thuật và phát thải ô nhiễm động cơ phun biogas-HHO trên đường nạp”, Tạp chí Khoa học và Công nghệ-Đại học Đà Nẵng, Vol.18, No1, 2020, pp. 43-48.
[20] Van Ga Bui , Van Nam Tran , Anh Tuan Hoang , Thi Minh Tu Bui & Anh Vu Vo, “A simulation study on a port-injection SI engine fueled with hydroxy-enriched biogas”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 1-17.
[21] Bùi Văn Ga, Bùi Thị Minh Tú, Trương Lê Bích Trâm, Nguyễn Đức Hoàng, Phạm Văn Quang, “Thiết lập giản đồ cung cấp nhiên liệu cho động cơ biogas-xăng”, Tạp chí Khoa học và Công nghệ- Đại học Đà Nẵng, Vol. 17, No. 9, 2019, pp. 33-39.