Mô phỏng quá trình cung cấp nhiên liệu linh hoạt syngas-biogas-hydrogen cho động cơ tĩnh tại đánh lửa cưỡng bức
##plugins.themes.academic_pro.article.main##
Author
-
Bùi Văn GaTrường Đại học Bách khoa - Đại học Đà NẵngNguyễn Văn ĐôngTrường Đại học Giao thông Vận tải thành phố Hồ Chí MinhCao Xuân TuấnĐại học Đà NẵngVõ Anh VũTrường Đại học Bách khoa - Đại học Đà Nẵng
Từ khóa:
Tóm tắt
Trong hệ thống năng lượng tái tạo hybrid năng lượng mặt trời-sinh khối, việc cung cấp nhiên liệu cho động cơ đánh lửa cưỡng bức cần được điều chỉnh một cách linh hoạt để thích nghi với thành phần syngas-biogas-hydrogen thay đổi trong phạm vi rộng. Tạo hỗn hợp bằng bộ chế hòa khí truyền thống không phù hợp do chênh lệch lớn về tỉ lệ không khí/nhiên liệu của syngas so với biogas hay hydrogen. Sử dụng công nghệ phun nhiên liệu trên đường nạp với vòi phun có đường kính lỗ phun lớn thì phù hợp với syngas nhưng không phù hợp với biogas hay hydrogen; Sử dụng vòi phun đường kính lỗ phun nhỏ thì ngược lại. Phối hợp sử dụng 2 vòi phun có đường kính lỗ phun 4mm và 6mm là phù hợp với động cơ Honda GX200 khi chuyển sang sử dụng nhiên liệu syngas-biogas-hydrogen. Khi tăng thành phần biogas hay hydrogen thì góc mở vòi phun 6mm giảm còn góc mở vòi phun 4mm duy trì giá trị cực đại 130°TK đến 70% biogas hay 50% hydrogen sau đó giảm. Áp suất phun hợp lý là 1 bar.
Tài liệu tham khảo
-
[1] Intergovernmental Panel on Climate Change (IPCC), “IPCC Special Report on Global Warming of 1.5ºC”, 2018, [Online] Available: https://www.ipcc.ch/site/assets/uploads/2018/11/pr_181008_P48_spm_en.pdf, accessed 7/2022.
[2] BeyhanAkarsu, MustafaSerdar Genç. “Optimization of electricity and hydrogen production with hybrid renewable energy systems”. Fuel, Volume 324, Part A, 2022, 124465. https://doi.org/10.1016/j.fuel.2022.124465
[3] Rogelj J., Geden O., Cowie A. & Reisinger A. “Net-zero emissions targets are vague: three ways to fix”. Nature 591, 2021, 365-368. https://www.nature.com/articles/d41586-021-00662-3
[4] Yousefi H, Ghodusinejad MH, Kasaeian A., “Multi-objective optimal component sizing of a hybrid ICE + PV/T driven CCHP microgrid”. Appl Therm Eng, 2017, https://doi. org/10.1016/j.applthermaleng.2017.05.017.
[5] Shaopeng Guo, Qibin Liu, Jie Sun, Hongguang Jin., “A review on the utilization of hybrid renewable energy”. Renewable and Sustainable Energy Reviews 91, 2018 1121–1147. https://doi.org/10.1016/j.rser.2018.04.105
[6] Van Ga Bui, Trung Hung Vo, Thi Minh Tu Bui, Le Bich Tram Truong, and Thanh Xuan Nguyen Thi, “Characteristics of Biogas-Hydrogen Engines in a Hybrid Renewable Energy System”. International Energy Journal, Volume 21, Issue 4, December 2021, pp.467-480.
[7] Van Ga Bui, Thi Minh Tu Bui, Hwai Chyuan Ong, Sandro Nižetić, Van Hung Bui, Thi Thanh Xuan Nguyen, A.E. Atabani, Libor Štěpanec, Le Hoang Phu Pham, Anh Tuan Hoang, “Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system”. Energy, Available online 18 April 2022, 124052. https://doi.org/10.1016/j.energy.2022.124052
[8] Lanyu Li, Xiaonan Wang. “Design and operation of hybrid renewable energy systems: current status and future perspectives”. Current Opinion in Chemical Engineering, Volume 31, March 2021, 100669. https://doi.org/10.1016/j.coche.2021.100669
[9] Mohammad HosseinJahangir, RaminCheraghi. “Economic and environmental assessment of solar-wind-biomass hybrid renewable energy system supplying rural settlement load”. Sustainable Energy Technologies and Assessments, Volume 42, December 2020, 100895. https://doi.org/10.1016/j.seta.2020.100895
[10] RamanKumar, Harpreet KaurChanni. “A PV-Biomass off-grid hybrid renewable energy system (HRES) for rural electrification: Design, optimization and techno-economic-environmental analysis”. Journal of Cleaner Production, Volume 349, 15 May 2022, 131347. https://doi.org/10.1016/j.jclepro.2022.131347
[11] Harpreet Kaur, Surbhi Gupta, Arvind Dhingra. “Analysis of hybrid solar biomass power plant for generation of electric power”. Materials today, Volume 48, Part 5, 2022, Pages 1134-1140. https://doi.org/10.1016/j.matpr.2021.08.080
[12] SonjaKallio, MonicaSiroux. “Hybrid renewable energy systems based on micro-cogeneration”. Energy Reports, Volume 8, Supplement 1, April 2022, Pages 762-769. https://doi.org/10.1016/j.egyr.2021.11.158
[13] Akash Kumar, Shukla K. Sudhakar, Prashant Baredar. “Renewable energy resources in South Asian countries: Challenges, policy and recommendations”. Resource-Efficient Technologies, Volume 3, Issue 3, September 2017, Pages 342-346. https://doi.org/10.1016/j.reffit.2016.12.003
[14] World Economic Forum, “Visualizing the world’s biggest rice producers”, 2022, [Online] Available: https://www.weforum.org/agenda/2022/03/visualizing-the-world-s-biggest-rice-producers/, accessed 7/2022.
[15] Shahbaz M, Al-Ansari T, Aslam M, Khan Z, Inayat A, Athar M, Naqvi SR, Ahmed MA, McKay G. “A state of the art review on biomass processing and conversion technologies to produce hydrogen and its recovery via membrane separation”. Int J Hydrogen Energy, 2020;45(30):15166–95. https://doi.org/ 10.1016/j.ijhydene.2020.04.009.
[16] Singh S, Singh M, Kaushik SC, “Feasibility study of an islanded microgrid in a rural area consisting of PV, wind, biomass and battery energy storage system”. Energy Convers Manage, 2016, 128:178-190 http://dx.doi.org/10.1016/j.enconman.2016.09.046
[17] Rakibul Hassan, Barun K. Das, Mahmudul Hasan. “Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development”. Energy. Volume 250, 1 July 2022, 123823. https://doi.org/10.1016/j.energy.2022.123823
[18] Willian Cézar Nadaleti, Grzegorz Przybyla. “Emissions and performance of a spark-ignition gas engine generator operating with hydrogen-rich syngas, methane and biogas blends for application in southern Brazilian rice industries”. Energy, Volume 154, 1 July 2018, Pages 38-51. https://doi.org/10.1016/j.energy.2018.04.046
[19] Arroyo, F. Moreno, M. Muñoz, C. Monné, N. Bernal. “Combustion behavior of a spark ignition engine fueled with synthetic gases derived from biogas”. Fuel, Volume 117, Part A, 30 January 2014, Pages 50-58. https://doi.org/10.1016/j.fuel.2013.09.055
[20] Y. Acevedo-Arenas, A. Correcher, C. Sánchez-Díaz, E. Ariza, D. Alfonso-Solar, C. Vargas-Salgado, J.F. Petit-Suárez. “MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response”. Energy Convers Manag, 186 (2019), pp. 241-257, 10.1016/j.enconman.2019.02.044
[21] XiangKan, DezhiZhou, WenmingYang, XiaoqiangZhai, Chi-HwaWang. “An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine”. Applied Energy, Volume 212, 15 February 2018, Pages 210-222. https://doi.org/10.1016/j.apenergy.2017.12.037
[22] Willian Cézar Nadaleti, Grzegorz Przybyla. “SI engine assessment using biogas, natural gas and syngas with different content of hydrogen for application in Brazilian rice industries: Efficiency and pollutant emissions”. International Journal of Hydrogen Energy, Volume 43, Issue 21, 24 May 2018, Pages 10141-10154. https://doi.org/10.1016/j.ijhydene.2018.04.073
[23] Carlos Vargas-Salgado, Jesús Águila-León, David Alfonso-Solar, Anders Malmquist, “Simulations and experimental study to compare the behavior of a genset running on gasoline or syngas for small scale power generation”. Energy, Volume 244, Part A, 1 April 2022, 122633. https://doi.org/10.1016/j.energy.2021.122633
[24] V.G. Bui, V.N. Tran, V.D. Nguyen, Q.T. Nguyen, T.T. Huynh, “Octane number stratified mixture preparation by gasoline–ethanol dual injection in SI engines”. International Journal of Environmental Science and Technology 16(7), 2018, pp. 3021-3034, https://doi.org/10.1007/s13762-018-1942-1.